OpenSCADAWiki: Home Page En/Using/API Function Libs/ Tech App ...

Home | Index | Changes | Comments | Users | Registration | Login  Password:  
 
This is an old revision of HomePageEn/Using/APIFunctionLibs/TechApp from 2016-11-13 16:20:14..

Library of models of technological devices

Name: TechApp
Founded: october 2005
Version: 0.9.0
State: Free (GPL)
Author: Roman Savochenko, Maxim Lysenko (2007,2010), Ksenia Yashina (2007)
Description: Provides the library of models of technological devices.
Address: DB in file: SQLite.LibDB.techApp (oscadalibs.db.gz)


Contents

About the library

The library is created to provide the models of devices of technological processes. The library is not static, but based on the module JavaLikeCalc, allowing to create calculations on the Java-like language.


To address the functions of the library you can use static call address "DAQ.JavaLikeCalc.lib_techApp.{Func}()" or dynamic "SYS.DAQ.JavaLikeCalc["lib_techApp"]["{Func}"].call()", "SYS.DAQ.JavaLikeCalc["lib_techApp"].{Func}()". Where {Func} — function identifier in the library.


To connect the library to the project of the OpenSCADA station it is possible by downloading the attached file of the database, placing it in in the database directory of the station's project and creating the database object for the DB module "SQLite", indicating the database file in the configuration.


For each function it was evaluated the execution time. Measurements were made on the system with the following parameters: Athlon 64 3000 + (2000MGts) + ALTLinux 5.1, 32bit by measuring the total execution time of the function when you call it 1000 times. Selection was made for the smallest value of the five computations. Time is in angle brackets and is measured in microseconds.

1 Conception

The basis of the model of each unit is the calculation of the input flow and output pressure based on the input pressure and output flow. In general, models of technological devices are described by difference equations for discrete machines.


Based on the functions of this library you can easily and quickly build models of technological processes in the module BlockCalc by combining the blocks in accordance with the technological scheme. Example of combination of several devices of the technological scheme is shown in Fig. 1.


 (18 Kb)
Fig. 1. An example of the block scheme of the technological process.

The basis of the model of any technological device are two basic formulas, namely the formula of flow and pressure. The canonical formula of the flow computation for the pipe section, or restriction of flow area is given by (1).


 (2 Kb) (1)

Where:
F — mass flow (t/hour).
S — section (m2).
Qr — real density of the medium (kg/m3).
∆P — pressure drop (at).

The actual density is calculated by the formula (2).

 (3 Kb) (2)

Where:
Q0 — density of the medium under normal conditions (kg/m3).
Kpr — coefficient of compressibility of the medium (0,001 — liquid; 0,95 — gas).
Pi — input pressure (at).

Each tube makes the dynamic resistance to the flow associated with the friction of the pipe walls and that depends on the flow velocity. The dynamic resistance of the pipe is expressed by (3). The total flow of the medium, taking into account the dynamic resistance is calculated by formula (4).

 (6 Kb) (3)

Where:
∆P — pressure drop (at), the resistance of the pipe walls to flow of the medium.
Kr — coefficient of friction of the walls of the pipe.
D — diameter of the pipeline (m).
l — pipeline length (m).
v — flow velocity in the pipeline (m3/hour).

 (4 Kb) (4)

Equation (1) describes the laminar outflow of medium to critical velocities. In the case of exceeding the critical flow velocity the calculation is made by the formula (5). A universal formula for calculating the flow at all speeds will have the formula (6).


 (3 Kb) (5)

Where:
Pi — pressure at the beginning of the pipe.


 (5 Kb) (6)

Where:

Po — pressure at the end of the pipe.

In dynamical systems the change of the flow at the end of the pipe does not change instantaneously, but lags behind the time travel of the medium plot from the beginning of the pipeline to its end. The time depends on the length of the pipe and velocity of the medium in the pipe. Delay of the flow changing at the end of the pipe can be described by formula (7). The resulting formula for calculating of the the flow in the pipe, taking into account the above features, written in the form (8).


 (2 Kb) (7)

Where:
Fo — flow at the end of the pipe.
t — time.
v — velocity of the flow = F/(Qr*S).

 (9 Kb) (8)

The pressure of the medium in the volume is usually calculated identically for all cases by formula (9).


 (5 Kb) (9)

2 The library structure

The library contains about two dozen of models of the often needed technological processes devices and supporting elements. The functions' names and its parameters are available in three languages: English, Russian and Ukrainian.

Lag (lag) <1.2>

Description: Lag model. You can use this for sensors' variables lag imitation.
Parameters:

IDParameterTypeModeHideDefault
out Output Real Return false 0
in Input Real Input false 0
t_lg Lag time (s) Real Input false 10
f_frq Calc frequency (Hz) Real Input true 100

Program:

Noise (2 harmonic + rand) (noise) <3.5>

Description: Noise model. Contain three parts:

Parameters:

IDParameterTypeModeHideDefault
out Output Real Return false 0
off Main offset Real Input false 1
a_g1 Harmonic part 1 amplitude Real Input false 10
per_g1 Harmonic part 1 period (s) Real Input false 10
a_g2 Harmonic part 2 amplitude Real Input false 5
per_g2 Harmonic part 2 period (s) Real Input false 0.1
a_rnd Random numbers amplitude Real Input false 1
f_frq Calc function period (Hz) Real Input true 100
tmp_g1 Harmonic part 1 counter Real Input true 0
tmp_g2 Harmonic part 2 counter Real Input true 0

Program:

Ball crane (ballCrane) <1.4>

Description: Ball crane model. Include going and estrangement time.
Parameters:

IDParameterTypeModeHideDefault
pos Position (%) Real Output false 0
com Command Boolean Input false 0
st_open State "Open" Boolean Output false 0
st_close State "Close" Boolean Output false 1
t_full Going time (s) Real Input false 5
t_up Estrangement time (s) Real Input false 0.5
f_frq Calc frequency (Hz) Real Input true 100
tmp_up Estrangement counter Real Input true 0
lst_com Last command Boolean Input true 0

Program:

Separator (separator) <14>

Description: Separator model included two phase: liquid and gas.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (ata) Real Input false 1
Si Input cutset (m2) Real Input false 0.2
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (ata) Real Output false 1
So Output cutset (m2) Real Input false 0.2
lo Output length (m) Real Input false 10
Fo_æ Output liquid flow (tones/h) Real Input false 0
Po_æ Output liquid pressure (ata) Real Output false 1
Liquid level (%) Real Output false 0
ProcÆ % liquid. Real Input false 0.01
Vap Device capacity (m3) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Liquid density (kg/m3) Real Input false 1000
f_frq Calc frequency (Hz) Real Input true 200

Program:

Valve (klap) <19.5>

Description: Valve model, include:

Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (ata) Real Input false 1
Ti Input temperature (K) Real Input false 273
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (ata) Real Output false 1
To Output temperature (K) Real Output false 273
So Output pipe cutset (m2) Real Input false .2
lo Output pipe length (m) Real Input false 10
S_kl1 Valve 1 cutset (m2) Real Input false .1
l_kl1 Valve 1 open (%) Real Input false 0
t_kl1 Valve 1 open time (s) Real Input false 10
S_kl2 Valve 2 cutset (m2) Real Input false .05
l_kl2 Valve 2 open (%) Real Input false 0
t_kl2 Valve 2 open time (s) Real Input false 5
Q0 Norm density of environs (kg/m3) Real Input false 1
Kln Linearity coefficient Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Ct Warm capacity of environs Real Input false 20
Riz Warm resistance of isolation Real Input false 20
noBack Back valve Boolean Input false 0
Fwind Air speed Real Input false 1
Twind Air temperature Real Input false 273
f_frq Calc frequency (Hz) Real Input true 200
tmp_l1 Position 1 lag Real Output true 0
tmp_l2 Position 2 lag Real Output true 0

Program:

Lag (clear) (lagClean) <2.9>

Description: Model of clear lag (transportable). Provide fir include some simple lag chains. Appointed for lags into long pipes.
Parameters:

IDParameterTypeModeHideDefault
out Output Real Return false 0
in Input Real Input false 0
t_lg Lag time (s) Real Input false 10
f_frq Calc frequency (Hz) Real Input true 100
cl1 Chain 1 Real Input true 0
cl2 Chain 2 Real Input true 0
cl3 Chain 3 Real Input true 0

Program:

Boiler: barrel (boilerBarrel) <30.5>

Description: The model of the boiler's barrel.
Parameters:

IDParameterTypeModeHideDefault
Fi1 Input water flow (tones/h) Real Output false 22
Pi1 Input water pressure (at) Real Input false 43
Ti1 Input water temperature (K) Real Input false 523
Si1 Input water cutset (m2) Real Input false 0.6
Fi2 Input smoke gas flow (tones/h) Real Output false
Pi2 Input smoke gas pressure (at) Real Input false 1.3
Ti2 Input smoke gas temperature (K) Real Input false 1700
Si2 Input smoke gas cutset (m2) Real Input false 10
Vi1 Barrel volume (m3) Real Input false 3
Lo Barrel level (%) Real Output false 10
S Heated surface (ì2) Real Input false 15
k Heat transfer coefficient Real Input false 0.8
Fo Output steam flow (tones/h) Real Input false 20
Po1 Output steam pressure (at) Real Output false 41.68
To1 Output steam temperature (K) Real Output false 10
So1 Output steam pipe cutset (m2) Real Input false 0.5
lo1 Output steam pipe length (m) Real Input false 5
Fo2 Output smoke gas flow (tones/h) Real Input false 180
Po2 Output smoke gas pressure (at) Real Output false 1
To2 Output smoke gas temperature (K) Real Input false 0
Fpara Inner barrel steam flow (tones/h) Real Output false 0
Tv Inner water temperature (K) Real Output false 0
f_frq Calc frequency (Hz) Real Input false 200

Program:

Boiler: burner (boilerBurner) <50.5>

Description: The fire chamber's of the boiler model which works with three fuels: blast-furnace gas, coke and natural gas.
Parameters:

IDParameterTypeModeHideDefault
Fi1 Input blast furnace gas flow (tone/h) Real Output false
Pi1 Input blast furnace gas pressure (at) Real Input false
Ti1 Input blast furnace gas temperature (K) Real Input false 40
Si1 Input blast furnace gas pipe cutset (m2) Real Input false
Fi2 Input natural gas flow (tone/h) Real Output false
Pi2 Input natural gas pressure (at) Real Input false
Ti2 Input natural gas temperature (K) Real Input false 20
Si2 Input natural gas pipe cutset (m2) Real Input false
Fi3 Input coke oven gas flow (tone/h) Real Output false
Pi3 Input coke oven gas pressure (at) Real Input false
Ti3 Input coke oven gas temperature (K) Real Input false 0
Si3 Input coke oven gas pipe cutset (m2) Real Input false
Fi4 Input air flow (tone/h) Real Output false
Pi4 Input air pressure (at) Real Input false
Ti4 Input air temperature (K) Real Input false 20
Si4 Input air cutset (m2) Real Input false
Fo Output smoke gas flow (tones/h) Real Input false
Po Output smoke gas pressure (at) Real Output false
To Output smoke gas temperature (K) Real Output false
So Output smoke gas pipe cutset (m2) Real Input false 90
lo Output smoke gas pipe length (m) Real Input false
V Burner volume (m3) Real Input false 830
CO The percentage of CO in the flue stack gases (%) Real Output false
O2 The percentage of O2 in the flue stack gases (%) Real Output false
f_frq Calc frequency (Hz) Real Input false 200

Program:

Network (loading) (net) <13>

Description: Loading with constant pressure on network. Contain parameter for noise connection.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 10
Pi Input pressure (ata) Real Input false 1
Po Output pressure setpoint (ata) Real Input false 1
So Output pipe cutset (m2) Real Input false 0.1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Noise Input flow's noise Real Input false 1
Q0 Norm density of environs (kg/m3) Real Input false 1
f_frq Calc frequency (Hz) Real Input true 200

Program:

Source (pressure) (src_press) <12>

Description: Source pressure with constant pressure. Contained the parameter for noise connection.
Parameters:

IDParameterTypeModeHideDefault
Pi Input pressure setpoint (at) Real Input false 10
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
So Output pipe cutset (m2) Real Input false 0.1
lo Output pipe length (m) Real Input false 100
Noise Input flow's noise Real Input false 1
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 200
Fit Input flow laged Real Output true 0

Program:

Air cooler (cooler) <16.5>

Description: Model of the air cooler for gas flow.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Ti Input temperature (K) Real Input false 273
Si Cooler's pipes cutset (m2) Real Input false 0.05
li Full cooler's pipes length (m) Real Input false 10
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 273
So Output pipe cutset (m2) Real Input false .2
lo Output pipe length (m) Real Input false 10
Tair Cooling air temperature (Ê) Real Input false 283
Wc Cooler performance Real Input false 200
Q0 Norm density of environs (kg/m3) Real Input false 1
Ct Warm capacity of environs Real Input false 100
Rt Warm resistance of isolation Real Input false 1
f_frq Calc frequency (Hz) Real Input true 200

Program:

Gas compressor (compressor) <12>

Description: Model of the gas compressor. Implement surge effect. Sarge count from the dynamic-gas curve, and next count coefficient of sarge margin.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Ti Input temperature (K) Real Input false 273
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 273
So Output pipe cutset (m2) Real Input false 0.2
lo Output pipe length (m) Real Input false 2
Kzp Surge protect margin coefficient Real Output false 0.1
N Turnovers (1000 x turn/min) Real Input false 0
V Capacity (m3) Real Input false 7
Kpmp Surge coefficient (surge point) Real Input false 0.066
Kslp Slope coefficient of surge curve Real Input false 0.08
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Ct Warm capacity of environs Real Input false 100
Riz Warm resistance of isolation Real Input false 100
Fwind Air speed Real Input false 1
Twind Air temperature Real Input false 273
f_frq Calc frequency (Hz) Real Input true 200
Fit Input flow laged Real Output true 0

Program:

Source (flow) (src_flow) <2.2>

Description: Source of constant flow. Contained parameter for noise connection.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow setpoint (tones/h) Real Input false 10
Fo Output flow (tones/h) Real Input false 10
Po Output pressure (at) Real Output false 1
So Output pipe cutset (m2) Real Input false 0.1
lo Output pipe length (m) Real Input false 100
Noise Input flow's noise Real Input false 1
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100

Program:

Pipe-base (pipeBase) <11.5>

Description: Implementation of the basic foundations of the model pipe:

Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Ti Input temperature (K) Real Input false 293
Si Input cutset (m2) Real Input false .2
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 293
So Output cutset (m2) Real Input false .2
lo Output length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.98
Ktr Coefficient of friction Real Input false 0.01
f_frq Calc frequency (Hz) Real Input false 100

Program:

Pipe 1->1 (pipe1_1) <36.5>

Description: Model of the pipe by scheme: 1 -> 1.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
So Output cutset (m2) Real Input false .2
lo Output length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 200
Pti Pti Real Output true 1
Fto Fto Real Output true 0
Pt1 Pt1 Real Output true 1
Ft1 Ft1 Real Output true 0

Program:

Pipe 2->1 (pipe2_1) <26>

Description: Model of the pipe by scheme: 2 -> 1.
Parameters:

IDParameterTypeModeHideDefault
Fi1 Input 1 flow (tones/h) Real Output false 0
Pi1 Input 1 pressure (at) Real Input false 1
Ti1 Input 1 temperature (K) Real Input false 273
Si1 Input 1 cutset (m2) Real Input false 0.2
Fi2 Input 2 flow (tones/h) Real Output false 0
Pi2 Input 2 pressure (at) Real Input false 1
Ti2 Input 2 temperature (K) Real Input false 273
Si2 Input 2 cutset (m2) Real Input false 0.2
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 273
So Output cutset (m2) Real Input false .2
lo Output length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Ct Warm capacity of environs Real Input false 20
Riz Warm resistance of isolation Real Input false 20
Fwind Air speed Real Input false 1
Twind Air temperature (Ê) Real Input false 273
f_frq Calc frequency (Hz) Real Input true 100

Program:

Pipe 3->1 (pipe3_1) <36>

Description: Model of the pipe by scheme: 3 -> 1.
Parameters:

IDParameterTypeModeHideDefault
Fi1 Input 1 flow (tones/h) Real Output false 0
Pi1 Input 1 pressure (at) Real Input false 1
Ti1 Input 1 temperature (K) Real Input false 273
Si1 Input 1 cutset (m2) Real Input false 0.2
Fi2 Input 2 flow (tones/h) Real Output false 0
Pi2 Input 2 pressure (at) Real Input false 1
Ti2 Input 2 temperature (K) Real Input false 273
Si2 Input 2 cutset (m2) Real Input false 0.2
Fi3 Input 3 flow (tones/h) Real Output false 0
Pi3 Input 3 pressure (at) Real Input false 1
Ti3 Input 3 temperature (K) Real Input false 273
Si3 Input 3 cutset (m2) Real Input false 0.2
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 273
So Output cutset (m2) Real Input false .2
lo Output length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Ct Warm capacity of environs Real Input false 20
Riz Warm resistance of isolation Real Input false 20
Fwind Air speed Real Input false 1
Twind Air temperature (Ê) Real Input false 273
f_frq Calc frequency (Hz) Real Input true 100

Program:

Pipe 1->2 (pipe1_2) <25.5>

Description: Model of the pipe by scheme: 1 -> 2.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo1 Output 1 flow (tones/h) Real Input false 0
Po1 Output 1 pressure (at) Real Output false 1
So1 Output 1 cutset (m2) Real Input false .2
lo1 Output 1 length (m) Real Input false 10
Fo2 Output 2 flow (tones/h) Real Input false 0
Po2 Output 2 pressure (at) Real Output false 1
So2 Output 2 cutset (m2) Real Input false .2
lo2 Output 2 length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100
F1tmp Temporary flow 1 Real Output true 0
F2tmp Temporary flow 2 Real Output true 0
Pot1 Temporary pressure 1 Real Output true 1
Pot2 Temporary pressure 2 Real Output true 1

Program:

Pipe 1->3 (pipe1_3) <36.5>

Description: Model of the pipe by scheme: 1 -> 3.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo1 Output 1 flow (tones/h) Real Input false 0
Po1 Output 1 pressure (at) Real Output false 1
So1 Output 1 cutset (m2) Real Input false .2
lo1 Output 1 length (m) Real Input false 10
Fo2 Output 2 flow (tones/h) Real Input false 0
Po2 Output 2 pressure (at) Real Output false 1
So2 Output 2 cutset (m2) Real Input false .2
lo2 Output 2 length (m) Real Input false 10
Fo3 Output 3 flow (tones/h) Real Input false 0
Po3 Output 3 pressure (at) Real Output false 1
So3 Output 3 cutset (m2) Real Input false .2
lo3 Output 3 length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100
F1tmp Temporary flow 1 Real Output true 0
F2tmp Temporary flow 2 Real Output true 0
F3tmp Temporary flow 3 Real Output true 0
Pot1 Temporary pressure 1 Real Output true 1
Pot2 Temporary pressure 2 Real Output true 1
Pot3 Temporary pressure 3 Real Output true 1

Program:

Pipe 1->4 (pipe1_4) <47.5>

Description: Model of the pipe by scheme: 1 -> 4.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo1 Output 1 flow (tones/h) Real Input false 0
Po1 Output 1 pressure (at) Real Output false 1
So1 Output 1 cutset (m2) Real Input false .2
lo1 Output 1 length (m) Real Input false 10
Fo2 Output 2 flow (tones/h) Real Input false 0
Po2 Output 2 pressure (at) Real Output false 1
So2 Output 2 cutset (m2) Real Input false .2
lo2 Output 2 length (m) Real Input false 10
Fo3 Output 3 flow (tones/h) Real Input false 0
Po3 Output 3 pressure (at) Real Output false 1
So3 Output 3 cutset (m2) Real Input false .2
lo3 Output 3 length (m) Real Input false 10
Fo4 Output 4 flow (tones/h) Real Input false 0
Po4 Output 4 pressure (at) Real Output false 1
So4 Output 4 cutset (m2) Real Input false .2
lo4 Output 4 length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100
F1tmp Temporary flow 1 Real Output true 0
F2tmp Temporary flow 2 Real Output true 0
F3tmp Temporary flow 3 Real Output true 0
F4tmp Temporary flow 4 Real Output true 0
Pot1 Temporary pressure 1 Real Output true 1
Pot2 Temporary pressure 2 Real Output true 1
Pot3 Temporary pressure 3 Real Output true 1
Pot4 Temporary pressure 4 Real Output true 1

Program:

Valve proc. mechanism (klapMech) <3>

Description: Model of the valve process mechanism. Include going time (aperiodic chain of two level) and estrangement time.
Parameters:

IDParameterTypeModeHideDefault
pos Position (%) Real Output false 0
pos_sensor Position by sensor (%) Real Output false 0
com Command Real Input false 0
st_open State "Open" Boolean Output false 0
st_close State "Close" Boolean Output false 1
t_full Going time (s) Real Input false 3
t_up Estrangement time (s) Real Input false 1
t_sensor Sensors' lag time (s) Real Input false 1
f_frq Calc frequency (Hz) Real Input true 100
tmp_up Estrangement count Real Output false 0
lst_com Last command Real Output false 0

Program:

Diaphragm (diafragma) <14>

Description: Diaphragm model.
Parameters:

IDParameterTypeModeHideDefault
Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
dP Pressure differential (kPa) Real Output false 0
Sdf Diaphragm cutset (m2) Real Input false 0.1
So Output pipe cutset (m2) Real Input false 0.2
lo Output pipe length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100

Program:

Heat exchanger (heatExch) <28.4>

Description: The model of the heat exchanger, it calculates the heat exchange of the two streams.
Parameters:

IDParameterTypeModeHideDefault
Fi1 Input 1 flow (tones/h) Real Input false 20
Pi1 Input 1 pressure (at) Real Input false 1
Ti1 Input 1 temperature (K) Real Input false 20
Si1 Input 1 cutset (m2) Real Input false 1
li1 Input 1 length (m) Real Input false 10
Q0i1 Input 1 norm density (kg/m3) Real Input false 1
Kpr1 Input 1 compressibility coefficient (0...1) Real Input false 0.9
Ci1 Input 1 warm capacity Real Input false 1
Fi2 Input 2 flow (tones/h) Real Input false 20
Pi2 Input 2 pressure (at) Real Input false 1
Ti2 Input 2 temperature (K) Real Input false 40
Si2 Input 2 cutset (m2) Real Input false 1
li2 Input 2 length (m) Real Input false 10
Q0i2 Input 2 norm density (kg/m3) Real Input false 1
Kpr2 Input 2 compressibility coefficient (0...1) Real Input false 0.9
Ci2 Input 2 warm capacity Real Input false 1
ki Heat transfer coefficient Real Input false 0.9
Fo1 Output 1 flow (tones/h) Real Input false 0
Po1 Output 1 pressure (at) Real Output false 1
To1 Output 1 temperature (K) Real Output false 273
So1 Output 1 cutset (m2) Real Output false 1
lo1 Output 1 length (m) Real Output false 10
Fo2 Output 2 flow (tones/h) Real Input false 0
Po2 Output 2 pressure (at) Real Output false 1
To2 Output 2 temperature (K) Real Output false 273
So2 Output 2 cutset (m2) Real Output false 1
lo2 Output 2 length (m) Real Output false 10
f_frq Calc frequency (Hz) Real Input false 200

Program:

Ññûëêè

Referring pages: HomePageEn/Doc
HomePageEn/Using/APIFunctionLibs/TechApp
HomePageEn/Using/ModelAGLKS


 
There are no files on this page.[Display files/form]
There is no comment on this page. [Display comments/form]