The library is created to provide the models of devices of technological processes. The library is not static, but based on the module JavaLikeCalc, allowing to create calculations on the Java-like language.
To address the functions of the library you can use static call address "DAQ.JavaLikeCalc.lib_techApp.{Func}()" or dynamic "SYS.DAQ.JavaLikeCalc["lib_techApp"]["{Func}"].call()", "SYS.DAQ.JavaLikeCalc["lib_techApp"].{Func}()". Where {Func} — function identifier in the library.
To connect the library to the project of the OpenSCADA station it is possible by downloading the attached file of the database, placing it in in the database directory of the station's project and creating the database object for the DB module "SQLite", indicating the database file in the configuration.
For each function it was evaluated the execution time. Measurements were made on the system with the following parameters: Athlon 64 3000 + (2000MGts) + ALTLinux 5.1, 32bit by measuring the total execution time of the function when you call it 1000 times. Selection was made for the smallest value of the five computations. Time is in angle brackets and is measured in microseconds.
1 Conception
The basis of the model of each unit is the calculation of the input flow and output pressure based on the input pressure and output flow. In general, models of technological devices are described by difference equations for discrete machines.
Based on the functions of this library you can easily and quickly build models of technological processes in the module BlockCalc by combining the blocks in accordance with the technological scheme. Example of combination of several devices of the technological scheme is shown in Fig. 1.
Fig. 1. An example of the block scheme of the technological process.
The basis of the model of any technological device are two basic formulas, namely the formula of flow and pressure. The canonical formula of the flow computation for the pipe section, or restriction of flow area is given by (1).
(1)
Where:
F — mass flow (t/hour).
S — section (m2).
Qr — real density of the medium (kg/m3).
∆P — pressure drop (at).
The actual density is calculated by the formula (2).
(2)
Where:
Q0 — density of the medium under normal conditions (kg/m3).
Kpr — coefficient of compressibility of the medium (0,001 — liquid; 0,95 — gas).
Pi — input pressure (at).
Each tube makes the dynamic resistance to the flow associated with the friction of the pipe walls and that depends on the flow velocity. The dynamic resistance of the pipe is expressed by (3). The total flow of the medium, taking into account the dynamic resistance is calculated by formula (4).
(3)
Where:
∆P — pressure drop (at), the resistance of the pipe walls to flow of the medium.
Kr — coefficient of friction of the walls of the pipe.
D — diameter of the pipeline (m).
l — pipeline length (m).
v — flow velocity in the pipeline (m3/hour).
(4)
Equation (1) describes the laminar outflow of medium to critical velocities. In the case of exceeding the critical flow velocity the calculation is made by the formula (5). A universal formula for calculating the flow at all speeds will have the formula (6).
(5)
Where:
Pi — pressure at the beginning of the pipe.
(6)
Where:
Po — pressure at the end of the pipe.
In dynamical systems the change of the flow at the end of the pipe does not change instantaneously, but lags behind the time travel of the medium plot from the beginning of the pipeline to its end. The time depends on the length of the pipe and velocity of the medium in the pipe. Delay of the flow changing at the end of the pipe can be described by formula (7). The resulting formula for calculating of the the flow in the pipe, taking into account the above features, written in the form (8).
(7)
Where:
Fo — flow at the end of the pipe.
t — time.
v — velocity of the flow = F/(Qr*S).
(8)
The pressure of the medium in the volume is usually calculated identically for all cases by formula (9).
(9)
2 The library structure
The library contains about two dozen of models of the often needed technological processes devices and supporting elements. The functions' names and its parameters are available in three languages: English, Russian and Ukrainian.
Lag (lag) <1.2>
Description: Lag model. You can use this for sensors' variables lag imitation. Parameters:
ID
Parameter
Type
Mode
Hide
Default
out
Output
Real
Return
false
0
in
Input
Real
Input
false
0
t_lg
Lag time (s)
Real
Input
false
10
f_frq
Calc frequency (Hz)
Real
Input
true
100
Program:
Noise (2 harmonic + rand) (noise) <3.5>
Description: Noise model. Contain three parts:
first harmonic part;
second harmonic part;
noise based on randomize generator of numbers.
Parameters:
ID
Parameter
Type
Mode
Hide
Default
out
Output
Real
Return
false
0
off
Main offset
Real
Input
false
1
a_g1
Harmonic part 1 amplitude
Real
Input
false
10
per_g1
Harmonic part 1 period (s)
Real
Input
false
10
a_g2
Harmonic part 2 amplitude
Real
Input
false
5
per_g2
Harmonic part 2 period (s)
Real
Input
false
0.1
a_rnd
Random numbers amplitude
Real
Input
false
1
f_frq
Calc function period (Hz)
Real
Input
true
100
tmp_g1
Harmonic part 1 counter
Real
Input
true
0
tmp_g2
Harmonic part 2 counter
Real
Input
true
0
Program:
Ball crane (ballCrane) <1.4>
Description: Ball crane model. Include going and estrangement time. Parameters:
ID
Parameter
Type
Mode
Hide
Default
pos
Position (%)
Real
Output
false
0
com
Command
Boolean
Input
false
0
st_open
State "Open"
Boolean
Output
false
0
st_close
State "Close"
Boolean
Output
false
1
t_full
Going time (s)
Real
Input
false
5
t_up
Estrangement time (s)
Real
Input
false
0.5
f_frq
Calc frequency (Hz)
Real
Input
true
100
tmp_up
Estrangement counter
Real
Input
true
0
lst_com
Last command
Boolean
Input
true
0
Program:
Separator (separator) <14>
Description: Separator model included two phase: liquid and gas. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (ata)
Real
Input
false
1
Si
Input cutset (m2)
Real
Input
false
0.2
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (ata)
Real
Output
false
1
So
Output cutset (m2)
Real
Input
false
0.2
lo
Output length (m)
Real
Input
false
10
Fo_æ
Output liquid flow (tones/h)
Real
Input
false
0
Po_æ
Output liquid pressure (ata)
Real
Output
false
1
Læ
Liquid level (%)
Real
Output
false
0
ProcÆ
% liquid.
Real
Input
false
0.01
Vap
Device capacity (m3)
Real
Input
false
10
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Qæ
Liquid density (kg/m3)
Real
Input
false
1000
f_frq
Calc frequency (Hz)
Real
Input
true
200
Program:
Valve (klap) <19.5>
Description: Valve model, include:
two valve in one;
super-critical speed;
temperature change on baffling;
work to one side, back valve;
valve position speed control;
nonlinear cut changing by open position.
Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (ata)
Real
Input
false
1
Ti
Input temperature (K)
Real
Input
false
273
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (ata)
Real
Output
false
1
To
Output temperature (K)
Real
Output
false
273
So
Output pipe cutset (m2)
Real
Input
false
.2
lo
Output pipe length (m)
Real
Input
false
10
S_kl1
Valve 1 cutset (m2)
Real
Input
false
.1
l_kl1
Valve 1 open (%)
Real
Input
false
0
t_kl1
Valve 1 open time (s)
Real
Input
false
10
S_kl2
Valve 2 cutset (m2)
Real
Input
false
.05
l_kl2
Valve 2 open (%)
Real
Input
false
0
t_kl2
Valve 2 open time (s)
Real
Input
false
5
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kln
Linearity coefficient
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
Ct
Warm capacity of environs
Real
Input
false
20
Riz
Warm resistance of isolation
Real
Input
false
20
noBack
Back valve
Boolean
Input
false
0
Fwind
Air speed
Real
Input
false
1
Twind
Air temperature
Real
Input
false
273
f_frq
Calc frequency (Hz)
Real
Input
true
200
tmp_l1
Position 1 lag
Real
Output
true
0
tmp_l2
Position 2 lag
Real
Output
true
0
Program:
Lag (clear) (lagClean) <2.9>
Description: Model of clear lag (transportable). Provide fir include some simple lag chains. Appointed for lags into long pipes. Parameters:
ID
Parameter
Type
Mode
Hide
Default
out
Output
Real
Return
false
0
in
Input
Real
Input
false
0
t_lg
Lag time (s)
Real
Input
false
10
f_frq
Calc frequency (Hz)
Real
Input
true
100
cl1
Chain 1
Real
Input
true
0
cl2
Chain 2
Real
Input
true
0
cl3
Chain 3
Real
Input
true
0
Program:
Boiler: barrel (boilerBarrel) <30.5>
Description: The model of the boiler's barrel. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi1
Input water flow (tones/h)
Real
Output
false
22
Pi1
Input water pressure (at)
Real
Input
false
43
Ti1
Input water temperature (K)
Real
Input
false
523
Si1
Input water cutset (m2)
Real
Input
false
0.6
Fi2
Input smoke gas flow (tones/h)
Real
Output
false
Pi2
Input smoke gas pressure (at)
Real
Input
false
1.3
Ti2
Input smoke gas temperature (K)
Real
Input
false
1700
Si2
Input smoke gas cutset (m2)
Real
Input
false
10
Vi1
Barrel volume (m3)
Real
Input
false
3
Lo
Barrel level (%)
Real
Output
false
10
S
Heated surface (ì2)
Real
Input
false
15
k
Heat transfer coefficient
Real
Input
false
0.8
Fo
Output steam flow (tones/h)
Real
Input
false
20
Po1
Output steam pressure (at)
Real
Output
false
41.68
To1
Output steam temperature (K)
Real
Output
false
10
So1
Output steam pipe cutset (m2)
Real
Input
false
0.5
lo1
Output steam pipe length (m)
Real
Input
false
5
Fo2
Output smoke gas flow (tones/h)
Real
Input
false
180
Po2
Output smoke gas pressure (at)
Real
Output
false
1
To2
Output smoke gas temperature (K)
Real
Input
false
0
Fpara
Inner barrel steam flow (tones/h)
Real
Output
false
0
Tv
Inner water temperature (K)
Real
Output
false
0
f_frq
Calc frequency (Hz)
Real
Input
false
200
Program:
Boiler: burner (boilerBurner) <50.5>
Description: The fire chamber's of the boiler model which works with three fuels: blast-furnace gas, coke and natural gas. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi1
Input blast furnace gas flow (tone/h)
Real
Output
false
Pi1
Input blast furnace gas pressure (at)
Real
Input
false
Ti1
Input blast furnace gas temperature (K)
Real
Input
false
40
Si1
Input blast furnace gas pipe cutset (m2)
Real
Input
false
Fi2
Input natural gas flow (tone/h)
Real
Output
false
Pi2
Input natural gas pressure (at)
Real
Input
false
Ti2
Input natural gas temperature (K)
Real
Input
false
20
Si2
Input natural gas pipe cutset (m2)
Real
Input
false
Fi3
Input coke oven gas flow (tone/h)
Real
Output
false
Pi3
Input coke oven gas pressure (at)
Real
Input
false
Ti3
Input coke oven gas temperature (K)
Real
Input
false
0
Si3
Input coke oven gas pipe cutset (m2)
Real
Input
false
Fi4
Input air flow (tone/h)
Real
Output
false
Pi4
Input air pressure (at)
Real
Input
false
Ti4
Input air temperature (K)
Real
Input
false
20
Si4
Input air cutset (m2)
Real
Input
false
Fo
Output smoke gas flow (tones/h)
Real
Input
false
Po
Output smoke gas pressure (at)
Real
Output
false
To
Output smoke gas temperature (K)
Real
Output
false
So
Output smoke gas pipe cutset (m2)
Real
Input
false
90
lo
Output smoke gas pipe length (m)
Real
Input
false
V
Burner volume (m3)
Real
Input
false
830
CO
The percentage of CO in the flue stack gases (%)
Real
Output
false
O2
The percentage of O2 in the flue stack gases (%)
Real
Output
false
f_frq
Calc frequency (Hz)
Real
Input
false
200
Program:
Network (loading) (net) <13>
Description: Loading with constant pressure on network. Contain parameter for noise connection. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
10
Pi
Input pressure (ata)
Real
Input
false
1
Po
Output pressure setpoint (ata)
Real
Input
false
1
So
Output pipe cutset (m2)
Real
Input
false
0.1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
Noise
Input flow's noise
Real
Input
false
1
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
f_frq
Calc frequency (Hz)
Real
Input
true
200
Program:
Source (pressure) (src_press) <12>
Description: Source pressure with constant pressure. Contained the parameter for noise connection. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Pi
Input pressure setpoint (at)
Real
Input
false
10
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (at)
Real
Output
false
1
So
Output pipe cutset (m2)
Real
Input
false
0.1
lo
Output pipe length (m)
Real
Input
false
100
Noise
Input flow's noise
Real
Input
false
1
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
f_frq
Calc frequency (Hz)
Real
Input
true
200
Fit
Input flow laged
Real
Output
true
0
Program:
Air cooler (cooler) <16.5>
Description: Model of the air cooler for gas flow. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (at)
Real
Input
false
1
Ti
Input temperature (K)
Real
Input
false
273
Si
Cooler's pipes cutset (m2)
Real
Input
false
0.05
li
Full cooler's pipes length (m)
Real
Input
false
10
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (at)
Real
Output
false
1
To
Output temperature (K)
Real
Output
false
273
So
Output pipe cutset (m2)
Real
Input
false
.2
lo
Output pipe length (m)
Real
Input
false
10
Tair
Cooling air temperature (Ê)
Real
Input
false
283
Wc
Cooler performance
Real
Input
false
200
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Ct
Warm capacity of environs
Real
Input
false
100
Rt
Warm resistance of isolation
Real
Input
false
1
f_frq
Calc frequency (Hz)
Real
Input
true
200
Program:
Gas compressor (compressor) <12>
Description: Model of the gas compressor. Implement surge effect. Sarge count from the dynamic-gas curve, and next count coefficient of sarge margin. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (at)
Real
Input
false
1
Ti
Input temperature (K)
Real
Input
false
273
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (at)
Real
Output
false
1
To
Output temperature (K)
Real
Output
false
273
So
Output pipe cutset (m2)
Real
Input
false
0.2
lo
Output pipe length (m)
Real
Input
false
2
Kzp
Surge protect margin coefficient
Real
Output
false
0.1
N
Turnovers (1000 x turn/min)
Real
Input
false
0
V
Capacity (m3)
Real
Input
false
7
Kpmp
Surge coefficient (surge point)
Real
Input
false
0.066
Kslp
Slope coefficient of surge curve
Real
Input
false
0.08
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
Ct
Warm capacity of environs
Real
Input
false
100
Riz
Warm resistance of isolation
Real
Input
false
100
Fwind
Air speed
Real
Input
false
1
Twind
Air temperature
Real
Input
false
273
f_frq
Calc frequency (Hz)
Real
Input
true
200
Fit
Input flow laged
Real
Output
true
0
Program:
Source (flow) (src_flow) <2.2>
Description: Source of constant flow. Contained parameter for noise connection. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow setpoint (tones/h)
Real
Input
false
10
Fo
Output flow (tones/h)
Real
Input
false
10
Po
Output pressure (at)
Real
Output
false
1
So
Output pipe cutset (m2)
Real
Input
false
0.1
lo
Output pipe length (m)
Real
Input
false
100
Noise
Input flow's noise
Real
Input
false
1
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
f_frq
Calc frequency (Hz)
Real
Input
true
100
Program:
Pipe-base (pipeBase) <11.5>
Description: Implementation of the basic foundations of the model pipe:
Flow in the pipe, taking into account the speed, pressure drop, resistance due to friction and the critical flow.
Calculation of pressure.
Accounting for medium density and degree of compressibility for both gases and liquids.
Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (at)
Real
Input
false
1
Ti
Input temperature (K)
Real
Input
false
293
Si
Input cutset (m2)
Real
Input
false
.2
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (at)
Real
Output
false
1
To
Output temperature (K)
Real
Output
false
293
So
Output cutset (m2)
Real
Input
false
.2
lo
Output length (m)
Real
Input
false
10
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.98
Ktr
Coefficient of friction
Real
Input
false
0.01
f_frq
Calc frequency (Hz)
Real
Input
false
100
Program:
Pipe 1->1 (pipe1_1) <36.5>
Description: Model of the pipe by scheme: 1 -> 1. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (at)
Real
Input
false
1
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (at)
Real
Output
false
1
So
Output cutset (m2)
Real
Input
false
.2
lo
Output length (m)
Real
Input
false
10
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
f_frq
Calc frequency (Hz)
Real
Input
true
200
Pti
Pti
Real
Output
true
1
Fto
Fto
Real
Output
true
0
Pt1
Pt1
Real
Output
true
1
Ft1
Ft1
Real
Output
true
0
Program:
Pipe 2->1 (pipe2_1) <26>
Description: Model of the pipe by scheme: 2 -> 1. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi1
Input 1 flow (tones/h)
Real
Output
false
0
Pi1
Input 1 pressure (at)
Real
Input
false
1
Ti1
Input 1 temperature (K)
Real
Input
false
273
Si1
Input 1 cutset (m2)
Real
Input
false
0.2
Fi2
Input 2 flow (tones/h)
Real
Output
false
0
Pi2
Input 2 pressure (at)
Real
Input
false
1
Ti2
Input 2 temperature (K)
Real
Input
false
273
Si2
Input 2 cutset (m2)
Real
Input
false
0.2
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (at)
Real
Output
false
1
To
Output temperature (K)
Real
Output
false
273
So
Output cutset (m2)
Real
Input
false
.2
lo
Output length (m)
Real
Input
false
10
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
Ct
Warm capacity of environs
Real
Input
false
20
Riz
Warm resistance of isolation
Real
Input
false
20
Fwind
Air speed
Real
Input
false
1
Twind
Air temperature (Ê)
Real
Input
false
273
f_frq
Calc frequency (Hz)
Real
Input
true
100
Program:
Pipe 3->1 (pipe3_1) <36>
Description: Model of the pipe by scheme: 3 -> 1. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi1
Input 1 flow (tones/h)
Real
Output
false
0
Pi1
Input 1 pressure (at)
Real
Input
false
1
Ti1
Input 1 temperature (K)
Real
Input
false
273
Si1
Input 1 cutset (m2)
Real
Input
false
0.2
Fi2
Input 2 flow (tones/h)
Real
Output
false
0
Pi2
Input 2 pressure (at)
Real
Input
false
1
Ti2
Input 2 temperature (K)
Real
Input
false
273
Si2
Input 2 cutset (m2)
Real
Input
false
0.2
Fi3
Input 3 flow (tones/h)
Real
Output
false
0
Pi3
Input 3 pressure (at)
Real
Input
false
1
Ti3
Input 3 temperature (K)
Real
Input
false
273
Si3
Input 3 cutset (m2)
Real
Input
false
0.2
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (at)
Real
Output
false
1
To
Output temperature (K)
Real
Output
false
273
So
Output cutset (m2)
Real
Input
false
.2
lo
Output length (m)
Real
Input
false
10
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
Ct
Warm capacity of environs
Real
Input
false
20
Riz
Warm resistance of isolation
Real
Input
false
20
Fwind
Air speed
Real
Input
false
1
Twind
Air temperature (Ê)
Real
Input
false
273
f_frq
Calc frequency (Hz)
Real
Input
true
100
Program:
Pipe 1->2 (pipe1_2) <25.5>
Description: Model of the pipe by scheme: 1 -> 2. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (at)
Real
Input
false
1
Fo1
Output 1 flow (tones/h)
Real
Input
false
0
Po1
Output 1 pressure (at)
Real
Output
false
1
So1
Output 1 cutset (m2)
Real
Input
false
.2
lo1
Output 1 length (m)
Real
Input
false
10
Fo2
Output 2 flow (tones/h)
Real
Input
false
0
Po2
Output 2 pressure (at)
Real
Output
false
1
So2
Output 2 cutset (m2)
Real
Input
false
.2
lo2
Output 2 length (m)
Real
Input
false
10
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
f_frq
Calc frequency (Hz)
Real
Input
true
100
F1tmp
Temporary flow 1
Real
Output
true
0
F2tmp
Temporary flow 2
Real
Output
true
0
Pot1
Temporary pressure 1
Real
Output
true
1
Pot2
Temporary pressure 2
Real
Output
true
1
Program:
Pipe 1->3 (pipe1_3) <36.5>
Description: Model of the pipe by scheme: 1 -> 3. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (at)
Real
Input
false
1
Fo1
Output 1 flow (tones/h)
Real
Input
false
0
Po1
Output 1 pressure (at)
Real
Output
false
1
So1
Output 1 cutset (m2)
Real
Input
false
.2
lo1
Output 1 length (m)
Real
Input
false
10
Fo2
Output 2 flow (tones/h)
Real
Input
false
0
Po2
Output 2 pressure (at)
Real
Output
false
1
So2
Output 2 cutset (m2)
Real
Input
false
.2
lo2
Output 2 length (m)
Real
Input
false
10
Fo3
Output 3 flow (tones/h)
Real
Input
false
0
Po3
Output 3 pressure (at)
Real
Output
false
1
So3
Output 3 cutset (m2)
Real
Input
false
.2
lo3
Output 3 length (m)
Real
Input
false
10
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
f_frq
Calc frequency (Hz)
Real
Input
true
100
F1tmp
Temporary flow 1
Real
Output
true
0
F2tmp
Temporary flow 2
Real
Output
true
0
F3tmp
Temporary flow 3
Real
Output
true
0
Pot1
Temporary pressure 1
Real
Output
true
1
Pot2
Temporary pressure 2
Real
Output
true
1
Pot3
Temporary pressure 3
Real
Output
true
1
Program:
Pipe 1->4 (pipe1_4) <47.5>
Description: Model of the pipe by scheme: 1 -> 4. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (at)
Real
Input
false
1
Fo1
Output 1 flow (tones/h)
Real
Input
false
0
Po1
Output 1 pressure (at)
Real
Output
false
1
So1
Output 1 cutset (m2)
Real
Input
false
.2
lo1
Output 1 length (m)
Real
Input
false
10
Fo2
Output 2 flow (tones/h)
Real
Input
false
0
Po2
Output 2 pressure (at)
Real
Output
false
1
So2
Output 2 cutset (m2)
Real
Input
false
.2
lo2
Output 2 length (m)
Real
Input
false
10
Fo3
Output 3 flow (tones/h)
Real
Input
false
0
Po3
Output 3 pressure (at)
Real
Output
false
1
So3
Output 3 cutset (m2)
Real
Input
false
.2
lo3
Output 3 length (m)
Real
Input
false
10
Fo4
Output 4 flow (tones/h)
Real
Input
false
0
Po4
Output 4 pressure (at)
Real
Output
false
1
So4
Output 4 cutset (m2)
Real
Input
false
.2
lo4
Output 4 length (m)
Real
Input
false
10
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
f_frq
Calc frequency (Hz)
Real
Input
true
100
F1tmp
Temporary flow 1
Real
Output
true
0
F2tmp
Temporary flow 2
Real
Output
true
0
F3tmp
Temporary flow 3
Real
Output
true
0
F4tmp
Temporary flow 4
Real
Output
true
0
Pot1
Temporary pressure 1
Real
Output
true
1
Pot2
Temporary pressure 2
Real
Output
true
1
Pot3
Temporary pressure 3
Real
Output
true
1
Pot4
Temporary pressure 4
Real
Output
true
1
Program:
Valve proc. mechanism (klapMech) <3>
Description: Model of the valve process mechanism. Include going time (aperiodic chain of two level) and estrangement time. Parameters:
ID
Parameter
Type
Mode
Hide
Default
pos
Position (%)
Real
Output
false
0
pos_sensor
Position by sensor (%)
Real
Output
false
0
com
Command
Real
Input
false
0
st_open
State "Open"
Boolean
Output
false
0
st_close
State "Close"
Boolean
Output
false
1
t_full
Going time (s)
Real
Input
false
3
t_up
Estrangement time (s)
Real
Input
false
1
t_sensor
Sensors' lag time (s)
Real
Input
false
1
f_frq
Calc frequency (Hz)
Real
Input
true
100
tmp_up
Estrangement count
Real
Output
false
0
lst_com
Last command
Real
Output
false
0
Program:
Diaphragm (diafragma) <14>
Description: Diaphragm model. Parameters:
ID
Parameter
Type
Mode
Hide
Default
Fi
Input flow (tones/h)
Real
Output
false
0
Pi
Input pressure (at)
Real
Input
false
1
Fo
Output flow (tones/h)
Real
Input
false
0
Po
Output pressure (at)
Real
Output
false
1
dP
Pressure differential (kPa)
Real
Output
false
0
Sdf
Diaphragm cutset (m2)
Real
Input
false
0.1
So
Output pipe cutset (m2)
Real
Input
false
0.2
lo
Output pipe length (m)
Real
Input
false
10
Q0
Norm density of environs (kg/m3)
Real
Input
false
1
Kpr
Compressibility coefficient (0...1)
Real
Input
false
0.95
f_frq
Calc frequency (Hz)
Real
Input
true
100
Program:
Heat exchanger (heatExch) <28.4>
Description: The model of the heat exchanger, it calculates the heat exchange of the two streams. Parameters: