Name: ModelKotelDMK Founded: January 2007 Version: 1.0.0 State: Finished, August 2010 Participants: Lysenko Maxim, Savochenko Roman, Yashina Ksenia Description: The project targets for creation full dynamic model steam boiler #9 Dnepr Metallurgical Combine (DMC). Address: DB in file: dmkkotel9.tlz |
The modelling object for the project, for creation full-scale dynamic model of real time, is multi-fuel steam boiler Dnepr Metallurgical Cobine (DMC) #9. A distinctive feature of the boiler is his multi-fuel nature and by that follow features in optimal control for boiler loading.
Functionality, the development targeted for creation the real time model of multi-fuel boiler DMC.
Exploitation target the development is:
With targets acceleration, using early developments experience, and also for perfecting the technologies and tools for creation full dynamic models real time decided the model build into open SCADA system OpenSCADA environment. System OpenSCADA has mostly powerful mechanism for user side programming, and also has achievements for creation full dynamic real time models, which allow fast creation big dynamic models real time. Detailed about this has been discussed in report (RU), at 5 Ukrainian conference of developers and users free software.
Before the Boiler model creation has been forming schematic diagram of the technological process, based on schematic diagram real technological process. Obtained diagram painted at Fig.1.
For the technological process model forming based on allowed apparatus models has been direct used source schematic diagram and block calculator (BlockCalc) of system OpenSCADA. The apparatus models of the schematic diagram was appending to block scheme in accordance with the schematic diagram. Part new blocks has been added for auxiliary devices, and also flow's nodes. Node's block numbers set on schematic diagram by numbers about the flow's nodes.
The model made in view two block schemes by block calculator. Content and properties of the block schemes allowed into table 1.
Table 1. The model's block schemes
ID | Name | Target | Execution period (ms) | Execution time at Athlon 64 3000+ (ms) |
kotel9 | DMC Boiler9 | Contained Boiler #9 model of Dnepr Metallurgical Combine. | 5 | 1.1 |
kotel9_cntr | DMC Boiler9 Controller | Contained control system Boiler #9 model of Dnepr Metallurgical Combine. | 1000 | 0.05 |
From the block schemes properties you can see, resource intensity at whole to central processor Athlon 64 3000+ (2000МГц) is 22%.
In table 2 allow used apparatus models list in accordance with schematic diagram.
Table 2. Used apparatus models
Apparatus model | Devices (model blocks) |
Library "Technological devices (DAQ.JavaLikeCalc.techApp)" | |
Boiler: barrel (boilerBarrel) | kotel9.Барабан |
Boiler: burner (boilerBurner) | kotel9.Топка |
Gas compressor (compressor) | kotel9.ДСА, kotel9.ДСБ, kotel9.ДВА, kotel9.ДВБ |
Heat exchanger (heatExch) | kotel9.ПП, kotel9.ВП1, kotel9.ВП2, kotel9.СП, kotel9.ЭК1, kotel9.ЭК2 |
Valve (klap) | kotel9.3ВП, kotel9.5ВП, kotel9.7ВП, kotel9.5ГД9, kotel9.6ГД9, kotel9.7ГД9, kotel9.8ГД9, kotel9.9ГД9, kotel9.10ГД9, kotel9.3ГК9, kotel9.4ГК9, kotel9.6ГК9, kotel9.5ГК9, kotel9.3ГП9, kotel9.4ГП9, kotel9.5ГП9, kotel9.6ГП9, kotel9.4ГПЗ9, kotel9.1Ш9, kotel9.2Ш9, kotel9.11Ш9, kotel9.13Ш9 |
Network (loading) (net) | kotel9.ParNet, kotel9.Атмосф |
Pipe 1->2 (pipe1_2) | kotel9.УЗ3, kotel9.Уз5, kotel9.Уз6, kotel9.Уз7, kotel9.Уз10 |
Pipe 2->1 (pipe2_1) | kotel9.УЗ1, kotel9.УЗ2, kotel9.УЗ9, kotel9.Уз12 |
Pipe 3->1 (pipe3_1) | kotel9.Уз8 |
Source (pressure) (src_press) | kotel9.SrcГД, kotel9.SrcГК, kotel9.SrcВода, kotel9.SrcПГ, kotel9.SrcВоздух |
Library "Complex1 functions lib (Special.FLibComplex1)" | |
PID regulator (pid) | kotel9_cntr.TCA1, kotel9_cntr.F_air_gas, kotel9_cntr.QAC151, kotel9_cntr.LC121, kotel9_cntr.PCA51, kotel9_cntr.FC101, kotel9_cntr.FC102, kotel9_cntr.FC103, kotel9_cntr.FC104, kotel9_cntr.FC105, kotel9_cntr.PSA76 |
Library "Boiler К9" (DAQ.JavaLikeCalc.k9) | |
Divider (Delitel) | kotel9_cntr.Air_Gas |
Total fuel flow in boiler (Fsum) | kotel9_cntr.Fsum |
Inversion (Inversion) | kotel9_cntr.5VP_inv |
Through the library apparatus models and the dynamic models build conception has been obtained the dynamic model, from that can get parameters into any point the schematic diagram both for the study and control algorithms for testing.
For getting the information about the technological process has been created TP parameters (table 3), which allow data from selected model's nodes.
Table 3. Technological process parameters
Cipher | Description | Properties | Source |
DMC Boiler9 (BlockCalc.kotel9) | |||
LC121 | The water level in the boiler's drum | Барабан.Lo | |
LСA122, LSA124 | The level of water in a clean drum slot, right | %, (0;100), Precision 0 | Барабан.Lo |
LSA123 | The level of water in a clean drum slot, left | %, (0;100), Precision 0 | Барабан.Lo |
LCVG121 | 3FWL-9 position | %, (0;100), Precision 0 | 3ВП.l_kl1 |
LCVG122 | 3FWR-9 position | %, (0;100), Precision 0 | 3ВП.l_kl2 |
G_11SH | 11G-9 position | 11Ш9.l_kl1 | |
G_12SH | 12G-9 position | 11Ш9.l_kl2 | |
G_13SH | 13G-9 position | 13Ш9.l_kl1 | |
G_14SH | 14G-9 position | 13Ш9.l_kl2 | |
P_5VP | 5FW(1) position | 5ВП.l_kl1 | |
P_5VP_2 | 5FW(2) position | 5ВП.l_kl2 | |
P_7VP | 7FW position | 7ВП.l_kl1 | |
P_4GP9 | 4GN9 position | 4ГП9.l_kl1 | |
P_5GP9 | 5GN9 position | 5ГП9.l_kl1 | |
P_7GD | 7GBF position | 7ГД9.l_kl1 | |
P_8GD | 8GBF position | 8ГД9.l_kl1 | |
FCVG102 | 5GN-9 position | 5ГП9.l_kl1 | |
FCVG103 | 7GBF9 position | 7ГД9.l_kl1 | |
FCVG104 | 8GN-9 position | 8ГД9.l_kl1 | |
FCVG105 | 4GC-9 position | 4ГК9.l_kl1 | |
TCVG1_1 | 7FW-9 position | 7ВП9.l_kl1 | |
TCVG1_2 | 5FWL-9 position | 5ВП9.l_kl1 | |
PCVG76 | SEA productivity | rpm, (0;100), Precision 1 | ДСА.N |
PCVG77 | SEB productivity | rpm, (0;100), Precision 1 | ДСБ.N |
FCV106 | BFA productivity | rpm, (0;100), Precision 1 | ДВА.N |
FCV107 | BFB productivity | rpm, (0;100), Precision 1 | ДВБ.N |
PCA51 | Steam pressure after the MSV | at, (0;50), Precision 2 | 4ГПЗ9.Po |
PSA52 | Steam pressure in the the boiler's drum | at, (0;40), Precision 2 | Барабан.Po1 |
PCA52 | Steam pressure in the boiler's drum | at, (0;50), Precision 2 | Барабан.Po1 |
PSA52_1 | Steam pressure in the boiler's drum | at, (0;40), Precision 2 | Барабан.Po1 |
PSA53 | GN pressure before the regulating valve | at, (0;40), Precision 2 | 3ГП9.Po |
PSA53_1 | GN pressure before the diaphragm | at, (0;40), Precision 2 | 3ГП9.Po |
PSA53_2 | GN pressure before the diaphragm | at, (0;40), Precision 2 | 3ГП9.Po |
PSA54 | GN pressure after the regulating valve | at, (0;1.5), Precision 3 | 5ГП9.Po |
PA55 | GN pressure before the left burner | at, (0;40), Precision 2 | 6ГП9.Po |
PA56 | GN pressure before the right burner | at, (0;40), Precision 2 | 6ГП9.Po |
PSA57_1, PSA57_2 | GBF pressure on the general pipeline. | at, (0;2), Precision 2 | УЗ3.Pi |
PSA59 | GBF pressure after valve on the left gas pipeline | at, (1;2), Precision 3 | 10ГД9.Po |
PSA60 | GBF pressure after valve on the right gas pipeline | at, (1;2), Precision 3 | 9ГД9.Po |
P61 | GBF pressure before the left burner | at, (0;1.6), Precision 2 | 9ГД9.Po |
P62 | GBF pressure before the right burner | at, (0;1.6), Precision 2 | 10ГД9.Po |
PSA63_1 | GC pressure after 5GC-9 | at, (0;2), Precision 2 | 5ГК9.Po |
PSA63_2 | GC pressure after 3GC-9 | at, (0;2), Precision 2 | 3ГК9.Po |
PSA64 | GC pressure after the regulating valve | at, (0;2), Precision 3 | 4ГК9.Po |
P65 | GC pressure before the left burner | at, (0;1.6), Precision 2 | 6ГК9.Po |
P66 | GC pressure before the right burner | at, (0;1.6), Precision 2 | 6ГК9.Po |
P67 | The air pressure before the first stage of A/H to the left. | at, (0;1.2), Precision 2 | УЗ9.Po |
P72 | The air pressure in the upper tier of the left burner | at, (0;1.2), Precision 2 | УЗ2.Po |
P68 | The air pressure before the first stage of A/H to the right. | at, (0;1.2), Precision 2 | УЗ9.Po |
PSA70 | Air pressure after the second stage of air-heater | at, (0;1.2), Precision 2 | ВП2.Po2 |
PSA71 | Air pressure after the second stage of air-heater | at, (0;1.2), Precision 2 | ВП2.Po2 |
P73, PSA73 | The air pressure in the upper tier of the right burner | at, (0;1.16), Precision 2 | УЗ2.Po |
P74 | The air pressure on the lower tier of the left burner | at, (0;1.16), Precision 2 | УЗ2.Po |
P75, PSA75 | The air pressure on the lower tier of the right burner | at, (0;1.16), Precision 2 | УЗ2.Po |
PCSA76 | The vacuum in the fire chamber on the left | at, (0.9;1), Precision 3 | Топка.Po |
PCSA77 | The vacuum in the fire chamber on the right | at, (0.9;1), Precision 3 | Топка.Po |
P78 | The vacuum in front of "SE-A" | at, (0.9;1), Precision 2 | 1Ш9.Po |
P79 | The vacuum in front of "SE-B" | at, (0.9;1), Precision 2 | 2Ш9.Po |
PSA80 | FW pressure on the left feeding line | at, (0;60), Precision 2 | SrcВода.Po |
PSA81 | FW pressure on the right feeding line | at, (0;60), Precision 2 | SrcВода.Po |
PSA85 | Air pressure after the air heater | at, (0;2), Precision 3 | ВП2.Po2 |
P103 | GBF pressure on the diaphragm on the left | at, (0;2), Precision 2 | УЗ3.Po2 |
P104 | GBF pressure on the diaphragm on the right | at, (0;2), Precision 2 | УЗ3.Po1 |
Src_GP_Pi | The inlet pressure at the source of GN | SrcПГ.Pi | |
P_GP_S | GN pressure after the source | SrcПГ.Po | |
P_GP_4GP | GN pressure after 4GN9 | 4ГП9.Po | |
P_3VP_1 | 3FW9(1) position | 3ВП.l_kl1 | |
P_3GP9 | 3GN9 position | 3ГП9.l_kl1 | |
P_6GP9_1 | 6GN9_1 position | 6ГП9.l_kl1 | |
P_6GP9_2 | 6GN9_2 position | 6ГП9.l_kl2 | |
P_5GK | 5GC position | 5ГК9.l_kl1 | |
Pbar | The pressure in the boiler's drum | Барабан.Po1 | |
TCA1 | Steam temperature after MSV | 4ГПЗ9.To | |
F_3VP | Water flow after 3FW | 3ВП.Fo | |
F_5VP | Water flow after 5FW | 5ВП.Fo | |
F_7VP | Water flow after 7FW | 7ВП.Fo | |
Fbar | Water flow into the drum | Барабан.Fi1 | |
F_UZ8 | Water flow after UZ8 | Уз8.Fo | |
FC101 | Steam flow from boiler | t/h, (0;100), Precision 2 | 4ГПЗ9.Fo |
FC102 | Flow of the natural gas after 3GN9 | 3ГП9.Fo | |
FC102_0 | Natural gas flow after it source | SrcПГ.Fo | |
FC102_1 | Natural gas flow after 4GN9 | 4ГП9.Fo | |
FC102_2 | Natural gas flow after 5GN9 | 5ГП9.Fo | |
FC102_3 | Natural gas flow after 6GN9 | 6ГП9.Fo | |
FC103 | GBF flow on the left gas pipeline | 5ГД9.Fi | |
FC104 | GBF flow on the right gas pipeline | 6ГД9.Fi | |
FC105 | Flow of coke gas after 5GC9 | 5ГК9.Fo | |
FC106 | Air flow to the left burner | t/h, (0;100), Precision 1 | УЗ2.Fi1 |
FC107 | Air flow to the right burner | t/h, (0;100), Precision 1 | УЗ2.Fi2 |
FA108 | The flow of air-superheater on the right feeding line | t/h, (0;200), Precision 2 | SrcВода.Fo |
F109 | Water flow for the thermostat | t/h, (0;200), Precision 2 | 7ВП.Fo |
FA110 | The flow of air-superheater on the left feeding line | t/h, (0;200), Precision 2 | SrcВода.Fo |
QA151 | The oxygen content in FG after the superheater | %, (0;20), Precision 2 | Топка.O2 |
QA152 | The CO content in FG after the superheater | %, (0;20), Precision 2 | Топка.CO |
QA153 | Oxygen content in the exhaust FG | %, (0;20), Precision 2 | Топка.O2 |
T2 | Natural gas temperature | deg.K, (223;323), Precision 2 | 3ГП9.To |
T3 | GBF temperature | deg.K, (273;373), Precision 2 | 5ГД9.Ti |
T5 | The temperature of the GC before boiler | deg.K, (273;373), Precision 2 | 4ГК9.To |
T7 | Air temperature after the second stage of air-heater on the left | deg.K, (273;773), Precision 2 | ВП2.To2 |
T8 | Air temperature after the second stage of air-heater on the right | deg.K, (273;773), Precision 2 | ВП2.To2 |
T13 | FG temperature before superheater on the left | deg.K, (273;1027), Precision 2 | Барабан.To2 |
T14 | FG temperature before superheater on the right | deg.K, (273;1027), Precision 2 | Барабан.To2 |
T15 | FG temperature before 2 stage of economizer on the left | deg.K, (273;873), Precision 2 | ПП.To1 |
T16 | FG temperature before 2 stage of economizer on the right | deg.K, (273;873), Precision 2 | ПП.To1 |
T17 | FG temperature after 2 stage of economizer on the left | deg.K, (273;873), Precision 2 | ЭК2.To1 |
T18 | FG temperature after 2 stage of economizer on the right | deg.K, (273;873), Precision 2 | ЭК2.To1 |
T19 | FG temperature before the first stage of air-heater on the left | deg.K, (273;873), Precision 2 | ЭК1.To1 |
T20 | FG temperature before the first stage of air-heater on the right | deg.K, (273;873), Precision 2 | ЭК1.To1 |
T21 | FG temperature before the second stage of air-heater on the left | deg.K, (273;873), Precision 2 | ЭК2.To1 |
T22 | FG temperature before the second stage of air-heater on the right | deg.K, (273;873), Precision 2 | ЭК2.To1 |
T23 | FG temperature before 1 stage of economizer on the left | deg.K, (273;873), Precision 2 | ВП2.To1 |
T24 | FG temperature before 1 stage of economizer on the right | deg.K, (273;873), Precision 2 | ВП2.To1 |
TA25 | FG temperature before th "SE-A" | deg.K, (273;673), Precision 2 | 1Ш9.To |
TA26 | FG temperature before th "SE-B" | deg.K, (273;673), Precision 2 | 2Ш9.To |
T35 | The temperature of water on the left feeding line | deg.K, (273;473), Precision 2 | 3ВП.To |
T36 | The temperature of water on the right feeding line | deg.K, (273;473), Precision 2 | 3ВП.To |
T37 | The water temperature after the economizer on the left | deg.K, (273;673), Precision 2 | ЭК2.To2 |
T38 | The water temperature after the economizer on the right | deg.K, (273;673), Precision 2 | ЭК2.To2 |
DMC Boiler9 Controller (BlockCalc.kotel9_cntr) | |||
TCA1 | Steam temperature at the outlet | K, (273;800), Precision 0 | TCA1.* |
QAC151 | The percentage of oxygen in the flue gases. | %, (0;15), Precision 1 | QAC151.* |
LC121 | Level in the boiler's drum | %, (0;100), Precision 1 | LC121.* |
5VP | %, (0;100), Precision 1 | 5VP_inv.OVar | |
FC101 | Steam flow from the boiler | t/h, (0;150), Precision 0 | FC101.* |
FC102 | Natural gas flow | t/h, (0;6), Precision 1 | FC102.* |
FC103 | Flow of blast furnace gas on the left gas pipeline | t/h, (0;70), Precision 1 | FC103.* |
FC104 | Flow of blast furnace gas on the right gas pipeline | t/h, (0;70), Precision 1 | FC104.* |
FC105 | Flow of the coke oven gas | t/h, (0;10), Precision 1 | FC105.* |
PSA76 | The vacuum in the fire chamber | at, (0.9;1), Precision 3 | PSA76.* |
By itself, the dynamic model may be unstable without control. For example, drum level parameter have not self-regulation and gone to edge points at case balance miss into regulation parameters. By that reason and for create all-sufficient model, which capable for work autonomous and without PLC for regulation, has been created regulators controller object for the boiler model in accordance with regulation schemes on figures 2 - 4.
The model user interface contain elven signal objects (Fig.5). Each signal object contain several mnemo, graphics group, contour group and overviews group.
Translation is going now
Результатом разработки стала полноценная динамическая модель технологического процесса многотопливного парового котла на высокое давление и большую производительность. Данная модель доступна на трёх языках и включена в дистрибутивы системы OpenSCADA для демонстрации функций и возможностей.
Модель предусматривает возможность управления ТП от лица оператора, включая операции:
В целом, в схеме управления, полноценно участвуют следующие регуляторы:
В прикладном смысле модель позволила отработать алгоритмы управления подачей нескольких родов топлива.
Ресурсоёмкость модели составила 70% на ядре процессора 800 МГц, архитектуры x86.