

Device Driver Manual

Linux CIF Device Driver

Edition: 4
Language: English (EN)

Hilscher Gesellschaft für Systemautomation mbH

Web: www.hilscher.com

http://www.hilscher.com/

List of Revisions 2

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

Index Date Version Chapter Comment

1 11.08.00 1.000 all created

2 26.07.02 2.000 all rewritten

3 10.12.02 2.100 1.2-3

4.2-4

5

completed

changed

created

4 01.02.07 2.620

Although this program has been developed with great care and intensively tested, Hilscher
Gesellschaft für Systemautomation mbH cannot guarantee the suitability of this program for
any purpose not confirmed by us in writing.

Guarantee claims shall be limited to the right to require rectification. Liability for any
damages which may have arisen from the use of this program or its documentation shall be
limited to cases of intent.

We reserve the right to modify our products and their specifications at any time in as far as
this contributes to technical progress. The version of the manual supplied with the program
applies.

Introduction 3

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

1 INTRODUCTION... 7

1.1 Linux... 7

1.2 The Driver Versions ... 7

1.3 Supported Hilscher Cards .. 8

1.4 PCMCIA Support.. 8

1.5 Data transfer .. 8

1.6 Terms for this Manual .. 9

2 GETTING STARTED .. 11

2.1 Overview .. 11

3 COMMUNICATION ... 13

3.1 About the User Interface .. 13
3.1.1 Message Interface and Process Data Image .. 13
3.1.2 The Protocol Dependent and Independent User Interface 13

3.2 Interface Structure.. 14

3.3 Message and Process Data Communication ... 15
3.3.1 Message Communication .. 15
3.3.2 I/O Communication with a Process Image.. 18
3.3.3 The Real-Time Operating System ... 23
3.3.4 The Protocol Task ... 24

4 THE DEVICE DRIVER .. 25

4.1 General .. 25

4.2 Package Contents.. 27

5 INSTALLATION OF THE DRIVER .. 28

5.1 Device Driver startup/shutdown ... 28
5.1.1 ISA Boards .. 29

6 THE TCP/IP SERVER... 31

6.1 General .. 31

6.2 Requirements... 31

6.3 Getting started with TCP/IP Server .. 31

Introduction 4

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

6.4 The communication process .. 32

6.5 ODM Message Definition ... 33

6.6 Compatibility... 33

7 PROGRAMMING INSTRUCTIONS .. 35

7.1 Include the Interface API in Your Application... 35

7.2 Open and Close the driver ... 35

7.3 Writing an Application .. 36
7.3.1 Determine Device Information ... 36
7.3.2 Message Based Application .. 38
7.3.3 Process Data Image Based Application .. 41

7.4 The Demo Application.. 43
7.4.1 C-Example... 44

8 THE APPLICATION PROGRAMMING INTERFACE .. 47

8.1 API Functions Overview... 47

8.2 DevOpenDriver() .. 48

8.3 DevCloseDriver().. 49

8.4 DevGetBoardInfo() ... 50

8.5 DevGetBoardInfoEx()... 51

8.6 DevInitBoard() .. 52

8.7 DevExitBoard()... 53

8.8 DevPutTaskParameter() .. 54

8.9 DevGetTaskParameter() .. 55

8.10 DevReset() ... 56

8.11 DevSetHostState() ... 57

8.12 DevTriggerWatchdog()... 58

8.13 Message Transfer Functions.. 59
8.13.1 DevGetMBXState() .. 59
8.13.2 DevPutMessage() .. 60
8.13.3 DevGetMessage().. 62

8.14 DevGetTaskState() .. 64

8.15 DevGetInfo()... 65

Introduction 5

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.16 Process Data Transfer Functions... 68
8.16.1 DevExchangeIO() .. 69
8.16.2 DevExchangeIOErr() ... 70
8.16.3 DevExchangeIOEx() .. 72
8.16.4 DevReadSendData() ... 73
8.16.5 DevReadWriteDPMData() ... 74
8.16.6 DevDownload() .. 75

9 ERROR NUMBERS .. 77

9.1 List of Error Numbers ... 77

9.2 Hints to Error Numbers .. 79

10 DEVELOPMENT ENVIRONMENTS ... 81

11 COPYRIGHT... 83

Introduction 7

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

1 Introduction

This manual describes driver package, load/unload topics, supported hardware and
copyright issue. The application programming interface (API) to our communication
boards is also explained in detail.

1.1 Linux

Linux is a free operating system developed under the GNU Lesser General Public
License , the source code for Linux is freely available to everyone.

Linux is a cost-effective, reliable and secure operating system. It is constantly being
updated and refined with the latest technologies. Linux gains greater acceptance
throughout the computing industry. Our company supports the use of Linux in the
field of industrial communication. This driver supports all Hilscher cards with Dual
Port Memory Interface.

Where to get Linux? Please, visit www.linux.org home page. There you can find any
Linux related information and useful links.

1.2 The Driver Versions

Driver Versions Kernel Versions Architecture Licence Supported boards

Native Linux

1.000 - 1.003 2.2.10, 14, 16 32-bit GPL ISA, PCI

2.000 2.4.0-2 32-bit LGPL ISA, PCI

2.100 2.4.xx 32-bit LGPL ISA, PCI, CPCI

2.620 2.6.18 32- & 64-bit LGPL ISA, PCI, CPCI, PCMCIA

Real-Time Linux, RTLinux

2.000 Linux 2.2.19-rtl,
RT-Linux-3.1

32-bit GPL ISA, PCI

Real-Time Linux, RTAI

2.000 Linux 2.4.25,
RTAI V3.0r4

32-bit LGPL ISA, PCI

http://www.gnu.org/licenses/licenses.html
http://www.gnu.org/licenses/licenses.html
http://www.linux.org/

Introduction 8

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

1.3 Supported Hilscher Cards

Linux CIF Device Driver supports Hilscher CIF-50 PCI, Compact-PCI, PCMCIA and
CIF-30/CIF-104 ISA cards. These are PROFIBUS, InterBus, DeviceNet and
CANopen cards.

1.4 PCMCIA Support

This driver version includes support for Hilscher pcmcia CIF-60 cards. The
development was done by Mr. Ivan Ibrin from the University of Siegen, sponsored
and supervised by Mr. Dr.-Ing. Rainer Lehrig. For more information, please, visit
http://pvbrowser.org.

1.5 Data transfer

On the communication boards, we distinguish between two types of data transfer.

• The first one is the message oriented data transfer used by message oriented
protocols.

• The second one is the data exchange with process images from I/O based
protocols.

http://pvbrowser.org/

Introduction 9

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

1.6 Terms for this Manual

DPM Dual-Port Memory is the physical interface to all communication board
 (DPM is also used for PROFIBUS-DP Master).

CIF Communication InterFace

COM COmmunication Module

HOST Application on the PC or a similar device

DEVICE Synonym for communication interfaces or communication modules

RCS Realtime Communicating System, this is the name of the operating
 system that runs on the communication boards.

Getting Started 11

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

2 Getting Started

2.1 Overview

• Section Communication includes general definitions and describes the
fundamentals about data transfers between an application and the
communication boards.

• Section The Device Driver describes an overview, the installation and
configuration of the device.

• The important section Programming Instructions describes the basic functionality
of using the device driver and presents an example.

• All functions of the device driver are explained in The Application Programming
Interface.

• Section Error Numbers lists a detail description of the error numbers

• Section Development Environments informs about used development tools.

Communication 13

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

3 Communication

3.1 About the User Interface

3.1.1 Message Interface and Process Data Image

There are two ways of data transfer between the HOST and the DEVICE:

• Message oriented data transfer

For telegram oriented protocols like PROFIBUS-FMS the data transfer happens with
messages, which will be send or received over two mailboxes in the dual-port
memory. There is one mailbox for each direction (Send direction and receive
direction). Normally, the data transfer will be controlled by events.

• Process data image transfer

In fieldbus systems, which handle input and output data, like PROFIBUS-DP or
InterBus-S, there is a data image of the process data inside the dual-port memory.
Input data and output data have their own area and the data transfer normally
happens cyclic.

3.1.2 The Protocol Dependent and Independent User Interface

The user interface via the dual-port memory of the communication interface and the
communication module has two parts, a protocol dependent, and a protocol
independent part.

The protocol independent part of the dual-port memory is the main part of the data
between HOST and DEVICE.

The particular protocol dependent part are the parameters for initializing the protocol
and the message structure for exchanging jobs between the HOST and the DEVICE.
These jobs are called messages. The structure of a message has reached a high
standard. This means that changing to another protocol is very simple.

The exactly composition of a message is described in the particular protocol manual.
The difference between the various protocols are only the protocol parameters. The
data model of the dual-port memory and the mechanism of message exchange are
always the same.

Communication 14

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

User side dula-port memory CIF/COM side

Memory applicable
to fieldbus systems
with I/O devices as
opposed to a
messaging system

highest 1 Kbyte
always
present

3.2 Interface Structure

The interface to the communication board based on a dual-port memory. The
following picture shows the various parts of the dual-port memory.

One dual-port memory map for all CIFs/COMs and all protocols with

• Process image for input and output data

• Two mailboxes for message communication

• Parameter area for simple protocols (baudrate, data bits, parity ...)

• Protocol status information (telegram counter, last error, valid slaves...)

• System status (firmware name/version, CIF revision/serial number...)

process image
output data

process image
input data

send mailbox

receive mailbox

protocol parameter

protocol status

system status

Communication 15

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

3.3 Message and Process Data Communication

3.3.1 Message Communication

A message is a unique data structure in which the user transmits or receives
commands and data from the CIF or COM.

A message consists of an 8 byte message header, an 8 byte telegram header and
up to 247 bytes of user data.

Message Header Used from operating system for transportation of the
 message. It is defined in this manual and constant for
 the application.

Telegram Header Defines the action for the protocol task.

User data Send/received data.

Parameter Type Meaning

Msg.Rx byte Number of Receiving Task

Msg.Tx byte Number of Sending Task

Msg.Ln byte Data length

Msg.Nr byte Number of Message for Identification

Msg.A byte Number of Responses

Msg.F byte Error Code

Msg.B byte Number of Command

Msg.E byte Completion

Message Header

Msg.DeviceAdr byte Communication Reference

Msg.DataArea byte Data Block

Msg.DataAdr word Object Index

Msg.DataIdx byte Object Subindex

Msg.DataCnt byte Data Quantity

Msg.DataType byte Data Type

Msg.Fnc byte Service

Telegram Header

Msg.D[0-246] byte User Data

Telegram User Data

General structure of a message

Communication 16

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

The meaning of the telegram header is an example for PROFIBUS-FMS. For other
protocols the structure is the same but, the parameters change as for example with
Modbus Plus, from communication reference to slave address, object index to
register address or service to function code.

The driver transfers a message independent from the protocol and works
transparent. The message reproduces the telegram.

Communication 17

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

3.3.1.1 Sending (Putting) and Receiving (Getting) Messages

The user creates the
send message and calls
DevPutMessage()
command.

Device Driver copies
Msg into internal Msg-
Buffer and starts
DMA.

The device takes out
the message, puts it in
an internal queue and
signals this action to
the HOST.

The queue is handled
by the FIFO principle.
If the message is on the
first position, it will be
decoded to generate
the send telegram.

If the device receives
the acknowledge
telegram, it generates a
receive message and
puts it in the queue.

If the message is in the
first position and the
receive mailbox is
empty, the message
will be copied in driver
internal buffer and the
mailbox set valid.

The user takes out the
receive message, with
the
DevGetMessage()
command, which sets
the mailbox state to
empty.

User App. Drv internal buffer Dev. Internal Buffer Fieldbus

Receive
message

Send
message

Receive
message

Receive
message

Send
message

Communication 18

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

3.3.2 I/O Communication with a Process Image

In fieldbus systems with IO devices like PROFIBUS-DP or InterBus-S there is a
process image of the IO data available directly in the dual-port memory. The access
is the same if the CIF or COM works as master or slave. Depending on the
application the user can choose between several handshake modes, or if only byte
consistence is required, the user can read and write without any synchronization.

3.3.2.1 Direct Data Transfer, DEVICE Controlled

 The CIF starts by itself a

data exchange cycle if it is
a master, or it receives a
data exchange cycle if it is
a slave

 Now the user can read

new input data and write
the output data in the dual-
port memory. This is done
by the DevExchangeIO()
function. .

The CIF/COM starts the
next data exchange cycle.

 .

Typical application: slave system, which must guarantee that the data from every
master cycle must be given to the user program.

User app. Dual-port memory Fieldbus

Input
data

Output
data

Input
data

Output
data

Communication 19

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

3.3.2.2 Buffered Data Transfer, DEVICE Controlled

CIF/COM makes cyclic
data exchanges on the
bus.

After each data exchange
the CIF/COM checks, if the
DPM is available.

 The user can read out the

input data and write the
new output data. This is
done by the
DevExchangeIO() function.

 If there was one data

exchange on the bus in the
meantime, the CIF/COM
exchanges the data
between the internal buffer
and the dual-port memory.

Typical application: slave system, where the slave gets an interrupt with the next
data exchange cycle.

User app. Dual-port memory internal buffer Fieldbus

Input
data

Output
data

Input
data

Output
data

Input
data

Communication 20

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

3.3.2.3 Uncontrolled Direct Data Transfer

The user reads and
writes the process
image, with the
DevExchangeIO()
function, at the same
time like the CIF/COM.

The CIF/COM does
cyclic data exchanges
and after every
exchange it makes an
update of the process
image.

 user app. Dual-port memory Fieldbus

Output
data

IInput
data

Communication 21

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

3.3.2.4 Buffered Data Transfer, HOST Controlled

Cyclic data exchange
between internal buffer and
fieldbus.

 The user reads last input

data and writes new output
data with the
DevExchangeIO() function.
Data exchange continues.

 CIF stops data exchange,

puts the output data in the
internal buffer and the
latest input data in the
dual-port memory.

 User reads input data and

writes output data
(DevExchangeIO()).

Typical application: easiest handshake in master and slave systems with a
guaranteed consistence of the complete process image.

User app. Dual-port memory internal buffer Fieldbus

Output
data

Input
data

Output
data

Input
data

Input
data

Output
data

Communication 22

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

3.3.2.5 Direct Data Transfer, HOST Controlled

No data exchange.

 The user writes new output

data with the
DevExchangeIO() function.

 CIF starts one data

exchange with the output
data in the DPM and writes
the new input data in the
dual-port memory.

 User reads new input data

with the next
DevExchangeIO().

Typical application: master system with synchronous IO devices.

User app. Dual-port memory internal buffer Fieldbus

Output
data

Output
data

Input
data

Input
data

Communication 23

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

The Software Structure on the Communication Boards
The software is based on an extremely modular architecture. The protocol itself is a
self-contained module which has no variables in common with any other software
module apart from the operating system. It is therefore possible to implement the
protocol with the same software module on all our boards, thus ensuring the greatest
software quality.

The main parts of the firmware are the real-time operating system and the protocol
task(s).

3.3.3 The Real-Time Operating System

The operating system can manage 7 tasks, and is optimized for real-time
communications services. It provides the following functions:

• Distribution of computing time among the individual-tasks.

• Task communication.

• Memory management.

• Provision of time functions.

• Diagnostic and general management functions.

• Transmit and receive functions.

The computing time is evenly distributed by the operating system among all tasks
ready to run. A task switch, i.e. switch over to the next task, takes place in cycles
every millisecond.

If a task has to wait for an external event, e.g. for the receipt of data, it is no longer
ready to run and a task switch is performed immediately.

The available computing time and the maximum possible sum baud rate make sure,
that a less prior task is not completely blocked by a high priority task. Presumably
the data through put is lower in this case.

Communication between the tasks takes place by messages. These are the areas of
memory made available by the operating system into which the tasks write data.
Transport of messages from one task to another and notification to a task that a
message is there is handled by the operating system.

The operating system also manages the memory area for storage of the tasks and
their stack. Individual tasks can be deleted or reloaded.

A task can wait for an event and the operating system will restart the task when the
event has occurred, the time resolution is 1 millisecond.

The operating system can stop or start individual tasks and pass on certain jobs to
them. The tasks thus make available data in the trace buffer which is managed by
the operating system.

The operating system communicates with the HOST (PC or a similar device) via the
dual-port memory interface. There is access to the individual-operating system
functions and to the individual tasks via the communications system.

Communication 24

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

3.3.4 The Protocol Task

The protocol task is responsible for transmission of the data in accordance with the
protocol. The parameters it requires for this are taken from the dual-port memory or
from the FLASH-memory.

A transmit job is always initiated with a message. This contains all the data to be
transmitted. These are provided with any control characters and checksums required
and then output by interrupt or DMA. At the same time, the corresponding monitoring
periods are started. When the data has been transferred or an error has occurred, a
corresponding acknowledgement is returned to the sender of the message.

Depending on the protocol, receive messages are restored after the transmission.
Receiving is done by interrupt or DMA. If a message has been received without
error, it is passed on by message to the PC via the dual-port memory interface.

I/O oriented protocol tasks work on the bus independently according to the given
protocol specification. The data transfer is not done by a message, but is done by
direct reading or writing to the send and receive data in the dual-port memory.

As the protocol task runs independently, a wide variety of protocols can be
implemented on the CIF, PC/104 or COM by replacing this task. Different tasks can
also be used for the two serial interfaces.

The Device Driver 25

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

4 The Device Driver

4.1 General

Linux CIF Device Driver was implemented as kernel mode driver and offers the best
performance for Hilscher cards on the Linux operating system.

The Driver implements very fast interrupt handler that guarantees optimal utilization of
our hardware. It can operate in polling mode too. If there is no mandatory reason to use
polling mode, use always interrupt mode. By hardware events interrupts are providing
best response time on the event.

 User Application

application

operating system

hardware

Board 1 Board 2 Board 3 Board 4

CIF Device Driver Interface

(cif_api.o)

Linux Operating System

CIF Device Driver (cif.o)

The Device Driver 26

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

Function Overview:

• handles one to four communication boards at once

• Interrupt and polling mode useable for each board (except PCMCIA)

All boards can be run in interrupt or polling mode. If interrupt mode is configured for a
board the device driver will install an interrupt service function for this board. The driver
will install an own interrupt service function for each interrupt driven board. So the
boards can be handled independently.

The difference between interrupt and poll mode is only the handling of application
request during timeout situations. If an application has to wait for a function (e.g.
DevReset()) so in interrupt mode the application will be blocked in the driver and the
CPU is free to do other work. After the given timeout or at the end of the command, the
application is released and does normal executing.

In poll mode the driver will run a "while loop", waiting until the function has finished or
the given timeout is reached. The user can also use the functions without timeout
(timeout=0) and run the polling by itself.

It is possible to use independent processes for send message (DevPutMessage()),
receive message (DevGetMessage()) and I/O data transfers (DevExchangeIO()).
Each process will be blocked in the driver when necessary without blocking the other
ones. If threads are used and a function has to wait for a certain operation (timeout
parameter unequal 0), the driver blocking mechanism will block each thread which is
accessing the driver. This is by design, because all threads in a process are sharing
the same driver handle (hidden in the driver API).

A solution is to use timeout=0 in the driver functions and to check the return values if
the function is processed without an error. For the message transfer functions
(DevPutMessage() and DevGetMessage()), DevGetMBXState() can be used to
check if the function can be e executed. immediately.

On each board only one receive (DevGetMessage()), one send
(DevPutMessage()) and one IO-Exchange (DevExchangeIO()) command can be
active at the same time, because there is no command queuing in the driver
implemented. So if one command for the specific function is active, all further
commands to the same function will be returned with an error. All other driver functions
are reentrants and can be called at every time.

Note: Switching between pooling mode and interrupt mode is supported by the driver
setup program (DrvSu)

The Device Driver 27

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

4.2 Package Contents

Installation Directory Subdirectory Description

README Read me 1st, please

src Driver source files

inc Driver header files

usr-inc Header files for API prototypes, protocol dependant header

api cif_api.c, api prototypes

cifSET cif Setup ‘n’ Test program with source code

demo Demo console program

tcp-ip_srv TCP-IP server for Linux CIF Device Driver

man Driver manual, just this document.

cifSET manual

. . ./cif2.620

AUTO Autoloading information

Device Driver files and scripts:

cif.ko* driver module

cif_cs.ko* pcmcia driver module

drv_build_n_load script for building+loading of the driver module

drv_load script for loading of the driver module

drv_remove script for unloading of the driver module

drv_build_n_load_pcmcia script for building+loading of the pcmcia driver module

drv_load_pcmcia script for loading of the pcmcia driver module

drv_remove_pcmcia script for unloading of the pcmcia driver module

API files:

cif_api.o* object file of the driver interface – the api

cif_user.h definition header file for the user interface

Test program:

cifSET an application for driver testing and debugging

* - these files are not included in the package, they must be generated on the
target machine due to cross-platform nature of the driver, frequent kernel/gcc
version updates and a great variety of the distros available on the market and
used in the industry.

Installation of the driver 28

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

5 Installation of the driver

To install this package on your computer simply extract .tbz file in your installation
directory:
tar xjfv cif2620.tbz

5.1 Device Driver startup/shutdown

To load and unload a driver module, cif.ko or cif_cs.ko, please, use scripts described
in ch. 4.2.

PCI cards are autodetected by the driver. If you use ISA cards, you have to set
jumpers on it as required and pass load parameters to the driver.

In order to generate pcmcia driver image cif_cs.ko, you should modify the Makefile in
the src/ folder. Simply uncomment ‘CIF_60 = y’ definition.

In order to load/unload the driver at the system start/shutdown you must modify some
system scripts. Please, consult files located in the ‘AUTO’ subdirectory of the
installation directory.

Installation of the driver 29

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

5.1.1 ISA Boards

For the ISA boards you have to specify the following parameters: DPM-address, DPM-
size and IRQ-number. you can have plugged up to four Hilscher communication
Boards at a time, so you can pass up to four DPM-addresses, DPM-sizes and IRQ-
numbers. The best way to describe this is by showing a few samples of the command
line.
./cif_load dpm_add=0xCA000 dpm_len=0x2 irq=11

if there is only one ISA board plugged with appropriate jumper settings.

If you want the board to operate in polling mode simply pass IRQ-number 0:
./cif_load dpm_add=0xCA000 dpm_len=0x2 irq=0

./cif_load dpm_add=0xCA000,0xCB000,0xCC000,0xCD000

 dpm_len=0x2,0x8,0x6,0x8

 irq=11,9,12,14

if there are four ISA boards plugged with appropriate jumper settings.

Note: On Intel platforms, DPM-addresses for ISA boards are in range 640KB-1MB
(0xA0000 to 0xFFFFF). Do not forget to tag IRQ-number, you are going to use for ISA
card, in BIOS as an ISA IRQ.

The TCP/IP Server 31

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

6 The TCP/IP Server

6.1 General

The TCP/IP server can be used to access online our CIF Device Driver
under Linux. All the online functions of SyCon, which is available only for
Windows at the moment, can be performed by this means over TCP/IP
connection to your Linux machine. Among other things you can perform
firmware and configuration download, send diagnose messages to the
remote CIF boards etc.

For the purpose of debugging, you can set DEBUG to 'y' in the make file
and recompile your server.

6.2 Requirements

In order to be able to communicate with CIF Device Driver over TCP/IP
connection you need SyCon V2.600 or higher and TCP/IP client running
on your SyCon machine. CIF Device Driver for Linux V1.003, V2.000 and
V2.100 were tested with this server.

For the purpose of debugging, you can set DEBUG to 'y' in the make file
and recompile your server.

6.3 Getting started with TCP/IP Server

First you must load CIF Device Driver. After that srvTCPIP can be started
in background with './srvTCPIP &' command.

The TCP/IP Server 32

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

6.4 The communication process

Messages sent from SyCon over TCP/IP connection are transferred
transparent to the CIF Board. In order to initiate communication between
SyCon and remote CIF Device Driver, there are some predefined
messages. The TCP/IP Server on your Linux machine is working with
connection oriented sockets and listens on Port 1099. You can establish
only one direct TCP/IP connection to one CIF board at the same time.

Communication details

SyCon side TCP/IP srv (Linux) side

BOARD_SELECT_COMMAND request:

ask for available boards' Info

Call driver function GetBoardInfoEx() and
send

the info structure to SyCon

BOARD_SELECT_ANSWER

select one available board and send
request to the server: board N selected

SyCon doesn't expect answer

Initialize board selected by SyCon: call
DevInitBoard(N).

pure user data / RCS message

send RCS messages to TCP/IP server

Pass messages transparent to actual CIF
board, send reply messages transparent to
SyCon

Each time SyCon selects another board, BOARD_SELECT_ANSWER
request is sent.

The TCP/IP Server 33

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

6.5 ODM Message Definition

ODM stands for Online Data Manager. For the first 2 steps described in
section The communication process there are special messages defined.

1. request message: -O-D-M-0- (4 Bytes). O, D, M are ASCII
characters, 0 is 0x00 hex

 :: BOARD_SELECT_COMMAND

2. expected response message from TCP/IP server on remote Linux
machine:

 -O-D-M-1-GENERAL_BOARD_INFO-

 where GENERAL-BOARD_INFO is a structure defined in "cifuser.h".

3. request message: -O-D-M-1-Nr-

Nr is number of selected board (0x00..0x03 hex)

:: BOARD_SELECT_ANSWER

6.6 Compatibility

Compatibility info for different tcp/ip versions

LINUX
CIF tcp/ip server

WINDOWS
ODM TCP/IP CLIENT

R-
Combination

Note

1.000 1.121 Only one tcp connection
supported

2.021

2.032 1.001

2.034

Multiple tcp
connections supported

2.021

2.032 1.010

2.034 *

Multiple tcp
connections supported

ODM TCP/IP Driver is used by the SyCon configuration tool running on a
WINDOWS machine acting as a client and connecting to the Linux side
CIF TCP/IP server.

* - Recommended combination!

Programming Instructions 35

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

7 Programming Instructions

7.1 Include the Interface API in Your Application

For the user API there is only one include file cif_user.h which contains all the
necessary information like structure, constant and prototype definitions. A complete
function description is given in the chapter 'The Programming Interface'. Link the
device API object (cif_api.o) according to your program.

For the support of the various protocols, each protocol has its own header file where
all the protocol dependent definition are included (e.g. dpm_user.h for the
PROFIBUS-DP Master protocol). Furthermore, there exists an include file rcs_usr.h
for the definitions of the operating system of the communication boards.

7.2 Open and Close the driver

Only three functions are needed to get a DEVICE to work:

Open a Driver

• Open the driver
DevOpenDriver(), checks if a driver is installed

• Initialize your communication board
DevInitBoard(), check if a specific board is available

• Set the application ready state
DevSetHostState(HOST_READY), signals the board an application

After these functions your application is able to start with the communication.

Close a Driver

• Clear the application ready state
DevSetHostState(HOST_NOT_READY), signals the board, no application
running

• Close the board link
DevExitBoard(), unlink from a board

• Close the device driver
DevCloseDriver(), close a link to the device driver

After calling these functions all resources for the communication API are freed.

Programming Instructions 36

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

7.3 Writing an Application

7.3.1 Determine Device Information

The interface API includes information functions, which gives an application the
possibility to determine the installed DEVICEs, the actual driver version and the
firmware name and version installed on the device. We suggest to read out these
informations and make them accessible to the user. This information can be used by
support inquiries to our hotline.

Important information:

• Driver version

• DEVICE type, model and serial number

• Firmware name and version

Read informations about installed devices:
After opening the driver with DevOpenDriver(), the function
DevGetBoardInfo() can be used to read the driver version and the installed
devices.

void Demo (void)
{
 short sRet;
 BOARD_INFO tBoardInfo;

 if ((sRet = DevOpenDriver()) == DRV_NO_ERROR) {
 // Driver successfully opend, read board information
 if ((sRet = DevGetBoardInfo(&tBoardInfo) != DRV_NO_ERROR) {
 // Function error
 printf("DevGetBoardInfo RetWert = %5d \n", sRet);
 } else {
 // Information successfully read, save for further use
 // Check out which boards are available
 for (usIdx = 0; usIdx < MAX_DEV_BOARDS; usIdx++){
 if (tBoardInfo.tBoard[usIdx].usAvailable == TRUE) {
 // Board is configured, try to init the board
 sRet = DevInitBoard(tBoardInfo.tBoard[usIdx].usBoardNumber);

 if (sRet != DRV_NO_ERROR) {
 // Function error
 printf("DevInitBoard RetWert = %5d \n", sRet);
 } else {
 // DEVICE is available and ready............
 }
 }
 }
 }
 }
}

Please refer to the function DevGetBoardInfo() for a description of the
BOARD_INFO structure.

Programming Instructions 37

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

Read informations about a specific DEVICE:
After opening a specific DEVICE with DevInitBoard() a lot of informations about
a DEVICE can be read by the function DevGetInfo().

void Demo (void)
{
 short sRet;
 BOARD_INFO tBoardInfo;
 FIRMWARE_INFO tFirmwareInfo;
 VERSION_INFO tVersionInfo;
 DEVINFO tDeviceInfo;

 if ((sRet = DevOpenDriver()) == DRV_NO_ERROR) {
 // Driver successfully opend, read board information
 if ((sRet =DevGetBoardInfo(&tBoardInfo) != DRV_NO_ERROR) {
 // Function error
 printf("DevGetBoardInfo RetWert = %5d \n", sRet);
 } else {
 // Information successfully read, open all existing boards
 for (usIdx = 0; usIdx < MAX_DEV_BOARDS; usIdx++){
 if (tBoardInfo.tBoard[usIdx].usAvailable == TRUE) {
 // Board is configured, try to init the board
 sRet = DevInitBoard(tBoardInfo.tBoard[usIdx].usBoardNumber);
 if (sRet != DRV_NO_ERROR) {
 // Function error
 printf("DevInitBoard RetWert = %5d \n", sRet);
 } else {

 // DEVICE is available and ready............

 // Read DEVICE specific information (VERSION_INFO)
 sRet = DevGetInfo(tBoardInfo.tBoard[usIdx].usBoardNumber,
 GET_VERSION_INFO,
 sizeof(tVersionInfo),
 tVersionInfo);

 // Read DEVICE specific information (DEVICE_INFO)
 sRet = DevGetInfo(tBoardInfo.tBoard[usIdx].usBoardNumber,
 GET_DEV_INFO,
 sizeof(tDeviceInfo),
 tDeviceInfo);

 // Read DEVICE specific information (FIRMWARE_INFO)
 sRet = DevGetInfo(tBoardInfo.tBoard[usIdx].usBoardNumber,
 GET_FIRMWARE_INFO,
 sizeof(tFirmwareInfo),
 tFirmwareInfo);
 }
 }
 } /* end for */
 }
 }
}

Please refer to the DevGetInfo() function for a description of the different
information structures.

Programming Instructions 38

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

7.3.2 Message Based Application

On message based application you have to be aware that a DEVICE can only queue
a fix number of messages (normally 20 to 128). Message queuing will be done in
send and receive direction. This means, the HOST and the connected protocol will
share all available messages. Each request or response from both sides will occupy
a message until it is transferred to the other side. If the amount of messages
exceeds the given limit, no matter if the HOST or the protocol uses all the messages,
the DEVICE is not longer able to create a response for a send or receive request.
This will happen until a message is freed by transferring it to the HOST or sending it
over by the protocol. This will free a message, which can be used for another data
transfer.

So an application should always be able to receive messages to prevent the
DEVICE for overrunning by the use of messages.

After opening the device interface and setting the application ready state, the
application must be able to process receive messages from the DEVICE.

Example 1:

/***
/* Mainprogram
/***
include "../usr-inc/cif_user.h"
int main(void)
{
 short sRet;
 MSG_STRUC tReceiceMessage;
 MSG_STRUC tSendMessage;

 /* - */
 /* Open the driver */
 if ((sRet = DevOpenDriver()) != DRV_NO_ERROR) {
 printf("DevOpenDriver RetWert = %5d \n", sRet);

 /* - */
 /* Initialize board */
 } else if ((sRet = DevInitBoard (0)) != DRV_NO_ERROR) {
 printf("DevInitBoard RetWert = %5d \n", sRet);

 /* - */
 /* Signal board, application is running */
 } else if ((sRet = DevSetHostState(0,
 HOST_READY,
 0L) != DRV_NO_ERROR)) {
 printf("DevSetHostState (HOST_READY) RetWert = %5d \n", sRet);

 } else {

 while (...PROGRAM IS RUNNING....) {

 // Application work........
 // Try to read a message
 sRet = DevGetMessage(0,
 &tReceiveMessage,
 100L); // Wait a maximum of 100 ms

 if (sRet == DRV_GET_TIMEOUT) {
 // No message available

Programming Instructions 39

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

 // Try again..............
 } else if (sRet != DRV_NO_ERROR) {
 // This is a function error
 // Process error
 } else {
 // Message available
 // Process message
 }

 // Try to send a message
 // Create a message like described in the protocol manual
 sRet = DevPutMessage(0,
 &tSendMessage,
 100L); // Wait a maximum of 100 ms
 if (sRet == DRV_PUT_TIMEOUT) {
 // Message could not be send
 // Mailbox full......
 } else if (sRet != DRV_NO_ERROR)) {
 // Error during send message
 // Process message error
 }
 } /* end while*/

 // Close the application
 /* - */
 /* Signal board, application is not running */
 if ((sRet = DevSetHostState(0,
 HOST_NOT_READY,
 0L)) != DRV_NO_ERROR) {
 printf("DevSetHostState RetWert = %5d \n", sRet);
 }

 /* - */
 /* Free board */
 if ((sRet = DevExitBoard (0)) != DRV_NO_ERROR) {
 printf("DevExitBoard RetWert = %5d \n", sRet);
 }

 /* - */
 /* Close driver */
 if ((sRet = DevCloseDriver()) != DRV_NO_ERROR) {
 printf("DevCloseDriver RetWert = %5d \n", sRet);
 }
 }
} /* end main*/

DevPutMessage() and DevGetMessage() uses a timeout value to force the driver to
wait for the completion of the function, until the given timeout period is passed. This
timeout should be used because the device needs also a period of time to get a
message or to write a message. This period is normally very short (400 us up to 4
ms) but working in a while loop with timeout equal to zero and try to put a message
in such a loop will result in a bad system response.

The given timeout from 100 ms is the maximum time the function will wait for
completion. It will return immediately if the function is done.

The application is responsible for the reiteration of messages which could not be
send to the DEVICE.

How the device acts after power up or changes of the HOST ready state (e.g. shut
down the bus or stop data transmission) is normally configurable by the protocol
configuration.

Programming Instructions 40

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

Another way to check if messages can be send or received is the use of the
DevGetMBXState() function. This function is used to determine the actual state
(DEVICE_MBX_FULL/EMPTY, HOST_MBX_FULL/EMPTY) of the HOST and
DEVICE mailbox. This the preferred way for a polling application.

Example 2:

/***
/* Mainprogram
/***
int main(void)
{
 unsigned short usDevState, usHostState;
 short sRet;
 MSG_STRUC tReceiceMessage;
 MSG_STRUC tSendMessage;

 // see example 1

 // HOST and DEVICE mailbox state
 if ((sRet = DevGetMBXState(0,
 &usDeviceState,
 &usHostState)) != DEV_NO_ERROR) {
 printf("DevGetMBXState RetWert = %5d \n", sRet);
 } else {
 if (usHostState == HOST_MBX_FULL) {
 // Read device message. message is available
 if ((sRet = DevGetMessage(0,
 &tReceiveMessage,
 0L)) != DRV_NO_ERROR) {
 printf("DevGetMessage RetWert = %5d \n", sRet);
 } else {
 // Process message
 }
 }
 if (usDeviceState == DEVICE_MBX_EMPTY) {
 // Send mailbox is empty
 if ((sRet = DevPutMessage(0,
 &tSendMessage,
 0L)) != DRV_NO_ERROR) {
 printf("DevPutMessage RetWert = %5d \n", sRet);
 }
 }
 }

//....... see example 1

In this example, the application must create its own polling cycle an is responsible
for freeing the processor for other applications.

Programming Instructions 41

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

7.3.3 Process Data Image Based Application

Applications which working with process data images (IO protocols) are using the
DevExchangeIO(), DevExchangeIOErr() or DevExchangeIOEx() function for the data
transfer between the HOST and the DEVICE.

Attention: By using DevExchangeIO() it is not possible for master devices to
recognize the fault of a specific bus device. Only global errors like whole bus
disruptions or communication breaks to all configured device will be indicated by this
function. To get specific device fault, the application must read the "TaskState-Field",
where device specific data are located. This must be done after each call to
DevExchangeIO().

Example 1:

/***
/* Mainprogram
/***
include "../usr-inc/cif_user.h"
int main(void)
{
 short sRet;
 unsigned char abIOSendData[512];
 unsigned char abIOReceiveData[512];

 /* - */ /* Open
the driver */
 if ((sRet = DevOpenDriver()) != DRV_NO_ERROR) {
 printf("DevOpenDriver RetWert = %5d \n", sRet);

 /* - */
 /* Initialize board */
 } else if ((sRet = DevInitBoard (0)) != DRV_NO_ERROR) {
 printf("DevInitBoard RetWert = %5d \n", sRet);

 /* - */ /* Signal
board, application is running */
 } else if ((sRet = DevSetHostState(0,
 HOST_READY,
 0L) != DRV_NO_ERROR)) {
 printf("DevSetHostState (HOST_READY) RetWert = %5d \n", sRet);

 } else {

 while (...PROGRAM IS RUNNING....) {

 // Application work........

 // Insert datas to the send data buffer
 abIOSendData[0] = 11;
 abIOSendData[1] = 22;
 abIOSendData[2] = 33;

 if ((sRet = DevExchangeIO(0,
 0,
 sizeof(abIOSendData),
 &abIOSendData[0],
 0,

Programming Instructions 42

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

 sizeof(abIOReceiveData),
 &abIOReceiveData[0],
 100L)) != DRV_NO_ERROR) {

 // Error during data exchange
 printf("DevExchangeIO RetWert = %5d \n", sRet);
 } else {
 // Input data are stored in the abIOReceiveData
 // Check for specific device errors (VERY IMPORTEND)
 if ((sRet = DevGetTaskState(.......)) != DRV_NO_ERROR) {
 // Error by reading task state information

 } else {
 // Check if one of the bus devices are faulty

 // Process input data...........
 }
 }
 } /* end while*/

 // Close the application
 /* - */ /*
Signal board, application is not running */
 if ((sRet = DevSetHostState(0,
 HOST_NOT_READY,
 0L)) != DRV_NO_ERROR) {
 printf("DevSetHostState RetWert = %5d \n", sRet);
 }

 /* - */
 /* Free board */
 if ((sRet = DevExitBoard (0)) != DRV_NO_ERROR) {
 printf("DevExitBoard RetWert = %5d \n", sRet);
 }

 /* - */ /*
Close driver */
 if ((sRet = DevCloseDriver()) != DRV_NO_ERROR) {
 printf("DevCloseDriver RetWert = %5d \n", sRet);
 }
 }
} /* end main*/

This example creates a send and a receive buffer. During the data exchange
function call the data from the send buffer (abIOSendBuffer) are written to the
DEVICE output process data area and the data from the input process data area are
read to the receive buffer (abIOReceiveBuffer). As data buffers, there are fixed data
area from 512 bytes for input and 512 bytes for output data used. The real size of the
process image can be determine by the DevGetInfo(GET_DEV_INFO) function. This
function returns the DPM size of the DEVICE as a multiple of 1024 Bytes (e.g. 2).
 process image size = ((bDpmSize * 1024) -1024) /2

From the whole size (2 * 1024 Byte) there must be subtract 1024 Byte, which is the
length of the last Kbytes (always reserved for message transfer and protocol
independent data). This gives a value of 1024 Bytes, which must be divided by two
(the size of the input and output process image is always equal. The synchronization
mode for the exchange function (e.g. uncontrolled and so on) will be recognized by
the DevExchangeIO() function and handled in the right manner.

Programming Instructions 43

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

Read out state information for all connected bus devices when using a master
device, to find out if on of the bus devices has a malfunction. This is done by the use
of DevGetTaskState(). The function must be called after each call to
DevExchangeIO() to discover problems with particular devices (see also
DevExchangeIOErr()).

The evaluation of the process data is up to the application. The exchange function
only copies a data area (one byte up to the whole data area) from and to the device.
Where the data for a particular device is located in the IO process image is defined
by the system configuration.

It is also possible to read only one byte from the image. But be aware, depending on
the sychronization mode (HOST Controlled, Buffered Data Transfer) , each data
exchange by the HOST will result in a complete buffer exchange on the DEVICE. To
prevent needless data transfers of unchanged data between the DPM and the
internal data buffer of the DEVICE, we suggest to transfer as much data as possible
with one DevExchangeIO() call to get the best system performance. The
DevExchangeIO() function can be used to send and receive process data in one call
or in two calls. Where one call writes output data and the other on reads input data.
To prevent one of the functions, set the corresponding size parameter equal to zero.

7.4 The Demo Application

We have created demo applications which show the use of the driver.

• If you want to test our driver not in X-Windows Environment, there is a simple
console demo program included in this package.

• For X-Windows system there is CIF Driver Setup and Test Program ‘dress’ in the
package. All of the driver functions are utilized in this application including
functions for the message transfer and for reading/writing process images.

The source code for this application is included, so it can help you understand how
to integrate the driver into your application.

Programming Instructions 44

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

7.4.1 C-Example

The sample code demonstrates the initialization and the data transfer for a message
and for process image exchange. This source code is available from the driver disk.

include "../usr-inc/cif_user.h"

/***
/* Mainprogram
/***/
int main(void)
{
 unsigned short usDevState, usHostState;
 short sRet;
 MSG_STRUC tMessage;
 unsigned char tIOSendData[512];
 unsigned char tIORecvData[512];

 /* - */
 /* Open the driver */
 if ((sRet = DevOpenDriver()) != DRV_NO_ERROR) {
 printf("DevOpenDriver RetWert = %5d \n", sRet);

 /* - */
 /* Initialize board */
 } else if ((sRet = DevInitBoard (0)) != DRV_NO_ERROR) {
 printf("DevInitBoard RetWert = %5d \n", sRet);

 /* - */
 /* Signal board, application is running */
 } else if ((sRet = DevSetHostState(0, /* DeviceNumber */
 HOST_READY, /* Mode */
0L) != DRV_NO_ERROR)) {
 printf("DevSetHostState (HOST_READY) RetWert = %5d \n", sRet);

 } else {

/*==
/* Test Message transfer
/*==
/* Build a message */
tMessage.rx = 0x01;
tMessage.tx = 0x10;
tMessage.ln = 12;
tMessage.nr = 1;
tMessage.a = 0;
tMessage.f = 0;
tMessage.b = 17;
tMessage.e = 0x00;
tMessage.daten[0] = 1;
tMessage.daten[1] = 2;
tMessage.daten[2] = 3;
tMessage.daten[3] = 4;

 /* -
 /* Send a message */
 sRet = DevPutMessage (0,
 (MSG_STRUC *)&tMessage,
5000L);
 printf(" DevPutMessage RetWert = %5d \n", sRet);

Programming Instructions 45

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

 /* -
 /* Receive a message */
 sRet = DevGetMessage (0,
 sizeof(tMessage),
 (MSG_STRUC *)&tMessage,
 20000L);

 printf(" DevGetMessage RetWert = %5d \n", sRet);

 /*===
 /* Test for ExchangeIO
 /*===

 /* Write test data to Send buffer */
 tIOSendData.abSendData[0] = 0;
 tIOSendData.abSendData[1] = 1;
 tIOSendData.abSendData[2] = 2;
 tIOSendData.abSendData[3] = 3;

 /* -
 /* Run ExchangeIO */
 sRet = DevExchangeIO (0,
 0, /* usSendOffset */
 4, /* usSendSize */
 &tIOSendData, /* *pvSendData */
 0, /* usReceiveOffset */
 4, /* usReceiveSize */
 &tIORecvData, /* *pvReceiveData */
 100L); /* ulTimeout */

 printf("DevExchangeIO RetWert = %5d \n", sRet);

 }
 /*-
 /* Signal board, application is not running
 if ((sRet = DevSetHostState(0,
 HOST_NOT_READY,
 0L) != DRV_NO_ERROR)) {
 printf("DevSetHostState (HOST_NOT_READY) RetWert = %5d \n", sRet);

 }

 /*-
 /* Close communication */
 sRet = DevExitBoard(0);
 printf("DevExitBoard RetWert = %5d \n", sRet);

 /* -
 /* Close Driver */
 sRet = DevCloseDriver();
 printf("DevCloseDriver RetWert = %5d \n", sRet);
 return 0;
}

The Application Programming Interface 47

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8 The Application Programming Interface

All definitions for data structures, function prototypes and definitions are located in
the user interface header file cif_user.h.

Note: Please notice, that the timer resolution on Linux system is 10ms. The use of
timeout values lower than the given timer resolution will result in timeout periods
between 0 the timer resolution.

8.1 API Functions Overview

Function Group Function Description

DevOpenDriver() Links an application to the device driver

DevCloseDriver() Closes a link to the driver

DevInitBoard() Links an application to a board

Installation

DevExitBoard() Closes a link to a board

DevReset() Resets a board

DevSetHostState() Sets/Clears the information bit for HOST is
running

Device Control

DevTriggerWatchDog() Serves watchdog function of the board

DevPutMessage() Transfer a message to the board

DevGetMessage() Read a message from a board

DevGetMBXState() Read actual mailbox state

Message Data Transfer

DevGetMBXData() Read actual mailbox data

DevExchandeIO() Put/Get IO data to/from a board

DevExchandeIOEx() Put/Get IO data to/from a COM module

DevExchandeIOErr() Put/Get IO data to/from a board including
state information

IO Data Transfer

DevReadSendData() Read/Send Rcv/Snd area of the DPM

DevPutTaskParameter() Writes the parameter for a communication
task

DevGetTaskParameter() Reads the parameter from a communication
task

Protocol,

Information,

Configuration

DevGetTaskState() Read all task states from a board

DevGetBoardInfo() Read global board information

DevGetBoardInfoEx() Read board extended information

Device Information

DevGetInfo() Read various information from a board

Other DevReadWriteDPMData() Read/Write the DPM directly

System function DevDownload() Firmware/Configuration download

The Application Programming Interface 48

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.2 DevOpenDriver()

Description:

If an application wants to communicate with a board, it must call this function first.
This function checks if the device driver is available and opens a link to it. Once an
link is opened, all other functions can be used. Call DevCloseDriver() to close the
link.

short DevOpenDrive ();

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 49

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.3 DevCloseDriver()

Description:

Close an open link to the device driver. An application has to call this function before
it ends.

short DevCloseDriver ();

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 50

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.4 DevGetBoardInfo()

Description:

With DevGetBoardInfo(), the user can read global information of all communication
boards the device driver knows. BOARD_INFO data structure describes the board
information data. This function can be used before opening a specific DEVICE with
the DevInitBoard() function.

short DevGetBoardInfo (BOARD_INFO *pvData);

Parameter:
Type Parameter Description

BOARD_INFO * pvData Pointer to the user data buffer

Data structure:

typedef struct tagBOARD_INFO{
 unsigned char abDriverVersion[16]; // DRV version information
 struct {
 unsigned short usBoardNumber; // DRV board number
 unsigned short usAvailable; // DRV board is available
 unsigned long ulPhysicalAddress; // DRV physical DPM address
 unsigned short usIrqNumber; // DRV irq number
 } tBoard [MAX_DEV_BOARDS];
} BOARD_INFO;

Type Parameter Description

Unsigned short usBoardNumber Always 0

Unsigned short usAvailable 0 = board not available; 1 = board available

Unsigned long ulPhysicalAddress Physical memory address

Unsigned short usIrqNumber Number of the hardware interrupt

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 51

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.5 DevGetBoardInfoEx()

Description:

With DevGetBoardInfoEx(), the user can read global information of all
communication boards the device driver knows. BOARD_INFOEX data structure which
describes the board information data. This function can be used before opening a
specific DEVICE with the DevInitBoard() function.

short DevGetBoardInfo (BOARD_INFOEX *ptBoardInfo);

Parameter:
Type Parameter Description

BOARD_INFOEX* ptBoardInfoEx Pointer to BOARD_INFOEx data structure

Data structure:

typedef struct tagBOARD_INFOEx{
 unsigned char abDriverVersion[16]; // DRV version information
 struct {
 unsigned short usBoardNumber; // DRV board number
 unsigned short usAvailable; // DRV board is available
 unsigned long ulPhysicalAddress; // DRV physical DPM address
 unsigned short usIrqNumber; // DRV irq number
 DRIVERINFO tDriverInfo; // Driver info structure
 FIRMWAREINFO tFirmware; // Driver info structure
 DEVINFO tDeviceInfo; // Device info structure
 RCSINFO tRcsInfo; // RCS info structure
 VERSIONINFO tDriverInfo; // Version info structure
 } tBoard [MAX_DEV_BOARDS];
} BOARD_INFOEX;

Type Parameter Description

Unsigned short usBoardNumber Always 0

Unsigned short usAvailable 0 = board not available; 1 = board available

Unsigned long ulPhysicalAddress Physical memory address

Unsigned short usIrqNumber Number of the hardware interrupt

DRIVERINFO tDriverInfo See DevGetInfo() description

FIRMWAREINFO tFirmware See DevGetInfo() description

DEVINFO tDeviceInfo See DevGetInfo() description

RCSINFO tRcsInfo See DevGetInfo() description

VERSIONINFO tDriverInfo See DevGetInfo() description

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 52

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.6 DevInitBoard()

Description:

After an application has opened a link to the device driver, it must call
DevInitBoard() before it can start with the communication. DevInitBoard()
tells the device driver that an application wants to work with a defined board. The
device driver checks, if the board is physical available, if the board works properly
and setup up all the internal state flags for the addressed board.

short DevInitBoard (unsigned short usDevNumber);

Parameter:
Type Parameter Description

Unsigned short usDevNumber Board number (0 . . 3)

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 53

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.7 DevExitBoard()

Description:

If an application wants to end communication it has to call DevExitBoard(). for each
board which has been opened by a previous call to DevInitBoard(). These
function frees all internal driver structures and unlink itself from the communication
board.

short DevExitBoard (unsigned short usDevNumber);

Parameter:
Type Parameter Description

Unsigned short usDevNumber Board number (0 . . 3)

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 54

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.8 DevPutTaskParameter()

Description:

This function hands over parameter to a task. This is only possible, if the protocol
picks up the parameters of the DPM.

The parameters in the DPM will only be taken over from the tasks with the next
WARMSTART.
short DevPutTaskParameter (unsigned short usDevNumber,
 unsigned short usNumber,
 unsigned short usSize,
 void *pvData);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usNumber Number of the parameter area (1 . . 7)

unsigned short usSize Size of the parameter area and length of the data
to be put

void* pvData Pointer to the user task parameters

Please notice, that you have to put the parameters in a structure according to the
protocol. The user has to build his own structure definition. The driver do not check
the parameters but it checks the length of the parameter structure. If the length of
the user data exceed the maximum length, the function call fails with an error. Invalid
parameters will be reported by the protocol.

Data structure:
typedef struct tagTASKPARAM {
 unsigned char abTaskParameter[64];
} TASKPARAM;

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 55

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.9 DevGetTaskParameter()

Description:

This function reads the task parameter area from a task.
short DevGetTaskParameter (unsigned short usDevNumber,
 unsigned short usNumber,
 unsigned short usSize,
 void *pvData);

Parameter:
Type Parameter Description

unsigned short UsDevNumber Board number (0 . . 3)

unsigned short UsNumber Task number (1, 2)

unsigned short UsSize Size of the user data buffer and length of the data
to be read

void * pvData Pointer to the user data buffer

Please notice, that you get the parameters in a structure according to the protocol.
The user has to build his own structure definition. The driver do not check the
parameters but it checks the length of the parameter structure. If the length of the
user data exceed the maximum length, the function call fails with an error.

Data structure:
typedef struct tagTASKPARAM {
 unsigned char abTaskParameter[64];
} TASKPARAM;

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 56

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.10 DevReset()

Description:

This function provokes a reset on a communication board. The passed parameter
usMode switches a coldstart or a warm start. The amount of the timeout ulTimeout
depends on the used protocol and reset mode. A coldstart needs a longer time then
a warm start because there will be made a complete hardware check by the device
operating system. Usually the time for a coldstart will be between 3 and 10 seconds,
a warm start needs between 2 and 8 seconds.

short DevReset (unsigned short usDevNumber,
 unsigned short usMode,
 unsigned long ulTimeout);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usMode 2 = COLDSTART, new initializing

3 = WARMSTART, initializing with parameters

4 = BOOTSTART, switches the board into bootstrap
loader mode. COM modules use this mode to store user
parameters

unsigned long ulTimeout Timeout

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 57

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.11 DevSetHostState()

Description:

The DevSetHostState() function is used, to signal the communication board that a
user application is running or not.

The utilization of the host state depends on the used communication protocol. Some
of the message based and the I/O based protocols uses this state to signal a
requesting station, no user application is running. I/O based protocol, such as
InterBus S or PROFIBUS-DP, can use this state to shut down data transmission to
other stations.

On the most of the protocols, the use of the host state can be configured. A detailed
description can be found in the corresponding protocol manual.
short DevSetHostState (unsigned short usDevNumber,
 unsigned short usMode,
 unsigned long ulTimeout);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usMode 0 = HOST_NOT_READY; 1 = HOST_READY

unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

The timeout parameter can be used by the user application to change the host state
and wait until the communication state of the board has also changed.
That means, if the host set HOST_READY and a timeout is configured, then the
function returns, if the communication state of the board is ready. Otherwise a
timeout occurs and the function returns with an error, which means, the board has
not reached communication ready state. If the host set HOST_NOT_READY and a
timeout is given, so the function will return, if the communication state of the board
reaches not ready. If a timeout occurs, the communication state has not reached not
ready and the function will return with an error. If no timeout is given, only the used
host state will be written to the communication board. No further check will be done.
The timeout period depends on the used bus system and varies between 100 ms up
to several seconds.

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 58

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.12 DevTriggerWatchdog()

Description:

The DevTriggerWatchdog() command can be used to check the device operating
system for normal operation. The parameter function determines what action on the
boards watchdog should be done (WATCHDOG_START, WATCHDOG_STOP). The function
reads the PcWatchDog cell and write it to the DevWatchDog cell of the DPM. With
writing a number unequal to zero in the DevWatchDog cell of the DPM, the
watchdog function of the board is activated. Since the watchdog is activated, the
application must trigger the watchdog within the time which is defined in the
protocols database. The application must not generate a watchdog counter, because
the operating system of the board increments the watchdog counter. This is done by
giving an unequal number (1) in the PcWatchDog. The trigger function take this
number and write it to the DevWatchDog cell. If the operating system reads a
number unequal to zero from the DevWatchDog then it increments the number and
write it back to the PcWatchDog cell. Every time the function is called, it returns the
actual watchdog counter to the application. So, if the application reads the same
counter value twice or more after the call to the trigger function, the board failed. To
stop the watchdog, the function writes a 0 to the DevWatchDog cell. After this the
boards operating system stops the watchdog checking.
short DevTriggerWatchDog (unsigned short usDevNumber,
 unsigned short usFunction,
 unsigned short *usDevWatchDog);

Parameter:
Type Parameter Description

Unsigned short UsDevNumber Board number (0 . . 3)

Unsigned short UsFunction Function of the watchdog

0 = WATCHDOG_STOP

1 = WATCHDOG_START

Unsigned short* usDevWatchDog Pointer to a user buffer, where the watchdog counter
value can be written to

 Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 59

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.13 Message Transfer Functions

Following functions are defined for message transfer:

• DevGetMBXState()

• DevPutMessage()

• DevGetMessage()

8.13.1 DevGetMBXState()

Description:

This function reads the actual state of the host and device mailbox of a
communication board.

You can use this function for writing applications to poll the device without waiting for
device events.

short DevGetMBXState (unsigned short usDevNumber,
 unsigned short *pusDevMBXState,
 unsigned short *pusHostMBXState);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short * pusDevMBXState Pointer to user buffer, to hold the device mailbox state

0 = DEVICE_MBX_EMPTY; 1 = DEVICE_MBX_FULL

unsigned long * pusHostMBXState Pointer to user buffer, to hold the host mailbox state

0 = HOST_MBX_EMPTY; 1 = HOST_MBX_FULL

 Return value:
Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 60

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.13.2 DevPutMessage()

Description:

This function sends (transfers) a message to the communication board. The function
copies the number of data, given in the length entry (msg.ln) of the message
structure and the message header.

If no timeout (ulTimeout = 0) is used, the function returns immediately. The return
code shows if the function was able to write the message to the device or not.

If a timeout (ulTimeout != 0) is used and the send mailbox of the device is empty,
the message is written to the mailbox and the function returns also immediately. If
the mailbox is full, the function will wait until the mailbox is free. If this does not
happen during the timeout duration, the function returns with an error code.

How the timeout is realized depends on the mode the DEVICE is configured. Polling
mode will run a loop in the driver while waiting the timeout duration.

In interrupt mode the calling application will block to free the CPU for other work.
short DevPutMessage (unsigned short usDevNumber,
 MSG_STRUC *ptMessage,
 unsigned long ulTimeout);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

MSG_STRUC * ptMessage Pointer to the message data

unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

Return value:
Value Description

DRV_NO_ERROR 0 = no error

The message have to be compatible to the message format and it must be
consistent, according to the protocol. The structure of the standard message is
located in the users interface header file.

The Application Programming Interface 61

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

Message structure:
#pragma pack(1)
// max. length is 288 Bytes, max. message length is 255 + 8 Bytes
typedef struct tagMSG_STRUC {
 unsigned char rx; // Receiver
 unsigned char tx; // Transmitter
 unsigned char ln; // Length
 unsigned char nr; // Number
 unsigned char a; // Answer
 unsigned char f; // Fault
 unsigned char b; // Command
 unsigned char e; // Extension
 unsigned char data[255]; // Data
 unsigned char dummy[25]; // for compatibility with
older
 // versions
} MSG_STRUC;
#pragma pack()

Note: Notice, for more information about the message structure refer to the
corresponding manual.

The Application Programming Interface 62

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.13.3 DevGetMessage()

Description:

This function reads a message out from a communication board and puts it into the
data buffer that is given by the user. The function checks if the message fits in the
users data buffer. This is done by comparing the parameter usSize with the length
which is given in the message structure. If the message doesn't fit, the function will
fail and returns an error.

If no timeout (ulTimeout = 0) is used, the function returns immediately. The return
code shows if the function was able to read a message from the device or not.
If a timeout (ulTimeout != 0) is used and a message is available, the function reads
the message and returns also immediately. If no message is available, the function
will wait until a message is available. If this does not happen during the timeout
duration, the function returns with an error code.

How the timeout is realized depends on the mode the DEVICE is configured. Polling
mode will run a loop in the driver while waiting the timeout duration
In interrupt mode the calling application will blocked to free the CPU for other work.
short DevGetMessage (unsigned short usDevNumber,
 unsigned short usSize,
 MSG_STRUC *ptMessage,
 unsigned long ulTimeout);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usSize Size of the user data buffer (maximum length to be read
)

MSG_STRUC * ptMessage Pointer to the message data

unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

Notice, the size of the user data buffer has to be large enough to hold all the data of
a message. The maximum length of a message can be taken from the message
structure in the users interface header file.

The Application Programming Interface 63

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

Message structure:
#pragma pack(1)
typedef struct tagMSG_STRUC {// max. 288 Bytes, max. msg len 255 + 8
Bytes
 unsigned char rx; // Receiver
 unsigned char tx; // Transmitter
 unsigned char ln; // Length
 unsigned char nr; // Number
 unsigned char a; // Answer
 unsigned char f; // Fault
 unsigned char b; // Command
 unsigned char e; // Extension
 unsigned char data[255]; // Data
 unsigned char dummy[25]; // for compatibility with older
versions
} MSG_STRUC;
#pragma pack()

Return value:
Value description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 64

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.14 DevGetTaskState()

Description:

This function reads one of the task state areas of a DEVICE. The data will be
transferred into the user data buffer. The function copies the number of data, given
in the parameter usSize.
short DevGetTaskState (unsigned short usDevNumber,
 unsigned short usNumber,
 unsigned short usSize,
 void *pvData);

Parameter:
Type Parameter Description

Unsigned short usDevNumber Board number (0 . . 3)

Unsigned short usNumber Number of the state area (1, 2)

Unsigned short usSize Size of the user data buffer (maximum length to be read)

Void * pvData Pointer to the user data buffer

To handle the data, please use the structures given by the protocols.

Notice, the maximum size of the area given by the user can be taken from the task
parameter structure in the users interface header file.

Data structures:

typedef struct tagTASKSTATE {
 unsigned char abTaskState[64];
} TASKSTATE;

Return value:

Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 65

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.15 DevGetInfo()

Description:

This function reads the various information out from a communication board and the
driver internal state information for a board. The information that can be read are as
followed:

- Driver state information GET_DRIVER_INFO

- Board version information GET_VERSION_INFO

- Board firmware information GET_FIRMWARE_INFO

- Task information area GET_TASK_INFO

- Board operation system information GET_RCS_INFO

- Device information area GET_DEV_INFO

- Device IO information GET_IO_INFO

- Device IO send data GET_IO_SEND_DATA

The function copies the number of data, given in the parameter usSize. For data
structure definitions look up in the user interface header file.
short DevGetInfo (unsigned short usDevNumber,
 unsigned short usInfoArea,
 unsigned short usSize,
 void *pvData);

Parameter:
Type Parameter Description

Unsigned short usDevNumber Board number (0 . . 3)

Unsigned short usInfoArea Defines which area have to be read

1 = GET_DRIVER_INFO

2 = GET_VERSION_INFO

3 = GET_FIRMWARE_INFO

4 = GET_TASK_INFO

5 = GET_RCS_INFO

6 = GET_DEV_INFO

7 = GET_IO_INFO

8 = GET_IO_SEND_DATA

Unsigned short usSize Size of the user data buffer and number of bytes to be
read

Void * pvData Pointer to the user data buffer

The Application Programming Interface 66

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

Defined data structures:

// GETINFO information definitions

#define GET_DRIVER_INFO 1
// Internal driver state information structure
typedef struct tagDRIVERINFO{
 unsigned long ulOpenCnt; // DevOpen() counter
 unsigned long ulCloseCnt; // DevClose() counter (not used)
 unsigned long ulReadCnt; // Number of DevGetMessage() commands
 unsigned long ulWriteCnt; // Number of DevPutMessage() commands
 unsigned long ulIRQCnt; // Number of board interrupts
 unsigned char bInitMsgFlag; // Actual init state
 unsigned char bReadMsgFlag; // Actual read mailbox state
 unsigned char bWriteMsgFlag; // Actual write mailbox state
 unsigned char bLastFunction; // Last driver function
 unsigned char bWriteState; // Actual write command state
 unsigned char bReadState; // Actual read command state
 unsigned char bHostFlags; // Actual host flags
 unsigned char bMyDevFlags; // Actual device flags
 unsigned char bExIOFlag; // Actual IO flags
 unsigned long ulExIOCnt; // DevExchangeIO() counter
} DRIVERINFO;

#define GET_VERSION_INFO 2
// Serial number and OS versions information
typedef struct tagVERSIONINFO {
 unsigned long ulDate; // Manufactor date (BCD coded)
 unsigned long ulDeviceNo; // Device number (BCD coded)
 unsigned long ulSerialNo; // Serial number (BCD coded)
 unsigned long ulReserved; // reserved
 unsigned char abPcOsName0[4]; // Operating system code 0 (ASCII)
 unsigned char abPcOsName1[4]; // Operating system code 1 (ASCII)
 unsigned char abPcOsName2[4]; // Operating system code 2 (ASCII)
 unsigned char abOemIdentifier[4]; // OEM reserved (ASCII)
} VERSIONINFO;

#define GET_FIRMWARE_INFO 3
// Device firmware information
typedef struct tagFIRMWAREINFO {
 unsigned char abFirmwareName[16]; // Firmware name (ASCII)
 unsigned char abFirmwareVersion[16]; // Firmware version (ASCII)
} FIRMWAREINFO;

#define GET_TASK_INFO 4
// Device task information
typedef struct tagTASKINFO {
 struct {
 unsigned char abTaskName[8]; // Taskname (ASCII)
 unsigned short usTaskVersion; // Task version (number)
 unsigned char bTaskCondition; // Actual task state
 unsigned char abreserved[5]; // reserved
 } tTaskInfo [7];
} TASKINFO;

The Application Programming Interface 67

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

#define GET_RCS_INFO 5
// Device operating system (RCS) information
typedef struct tagRCSINFO {
 unsigned short usRcsVersion; // Device RCS version (number)
 unsigned char bRcsError; // Operating system errors
 unsigned char bHostWatchDog; // Host watchdog value
 unsigned char bDevWatchDog; // Device watchdog value
 unsigned char bSegmentCount; // RCS segment free counter
 unsigned char bDeviceAdress; // RCS device base address
 unsigned char bDriverType; // RCS driver type
} RCSINFO;

#define GET_DEV_INFO 6
// Device description
typedef struct tagDEVINFO {
 unsigned char bDpmSize; // Device DPM size (2,8..) (number)
 unsigned char bDevType; // Device type (number)
 unsigned char bDevModel; // Device model (number)
 unsigned char abDevIdentifier[3];// Device identification (ASCII)
} DEVINFO;

#define GET_IO_INFO 7
// Device exchange IO information
typedef struct tagIOINFO {
 unsigned char bComBit; // Actual state of the COM bit (0,1)
 unsigned char bIOExchangeMode; // Actual data exchange mode (0..5)
 unsigned long ulIOExchangeCnt; // Exchange IO counter
} IOINFO;

Return value:

Value Description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 68

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.16 Process Data Transfer Functions

Following functions are defined for process data transfer:

• DevExchangeIO()
Is the standard function for the data transfer of process image data. Only general
bus errors are detected by this function. To get error information about specific
devices, the function DevGetTaskState() must be used after each call to
DevExchangeIO() to read the task information field.

• DevExchangeIOErr()
Is an extension of the DevExchangeIO() function. It contains the COMSTATE
structure as an parameter, where device specific data will be transferred by each
call to the function. No additional call of DevGetTaskState() is required.

• DevExchangeIOEx()
This function is a special function to work with COM modules.

• DevReadSendData()
This function can be used to read back the send process image from a device

Attention: By using DevExchangeIO()it is not possible for master devices to
recognize the fault of a specific bus device. Only global errors like whole bus
disruptions or communication breaks to all configured device will be indicated by this
function.
To get specific device fault, the application must read the "TaskState-Field", where
device specific data are located.

The Application Programming Interface 69

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.16.1 DevExchangeIO()

Description:

The DevExchangeIO() function is used, to send I/O data to and receive I/O data
from a communication board. This function is able to send and receive I/O data at
once. If one of the size parameter is set to zero, no action will be taken for the
corresponding function. This means, if usSendSize is set to zero, send data will not
be written to the board. If usReceiveSize is set to zero, receive data will not be
read from the board.

The user can wait until a complete action is done, by the use of ulTimeout. If an
timeout occurs, the function will return with an error. If no timeout is given, the
function will return immediately.

The function will automatically recognize the synchronization mode of the process
data transfer and handle it in the defined way.

ATTENTION: Only general bus errors are detected by this function. Use
DevGetTaskState() after each call to DevExchangeIO() to read the task information
field and to check device specific errors.

short DevExchangeIO (unsigned short usDevNumber,
 unsigned short usSendOffset,
 unsigned short usSendSize,
 void *pvSendData,
 unsigned short usReceiveOffset,
 unsigned short usReceiveSize,
 void *pvReceiveData,
 unsigned long ulTimeout);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usSendOffset Byte offset in the send IO data area of the
communication board

unsigned short usSendSize Length of the send IO data

void * pvSendData Pointer to the user send data buffer

unsigned short usReceiveOffset Byte offset in the receive IO data area of the
communication board

unsigned short usReceiveSize Length of the receive IO data

void * pvReceiveData Pointer to the user receive data buffer

unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

Return value:

Value description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 70

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.16.2 DevExchangeIOErr()

Description:

DevExchangeIOErr() is an extension of the DevExchangeIO() function. The
handling for sending and receiving I/O data acts in the same way like in the
DevExchangeIO() function. Furthermore, the function has an additional parameter
which holds state information according to the configured bus devices. This
information is only available on master DEVICEs.

Normally the DEVICE will set its communication ready bit (COM flag) if at least one
of the configured bus devices is connected and running properly. If more modules
are configured, the COM flag can not signal an error for a specific device. The COM
flag is only able to indicate global failures like whole bus disruptions or
communication breaks to all configured devices. In this case the state field
information can be used to detect errors of a specific bus device.

Note: Please check, if the DEVICE firmware of the master device supports the
several modes of state field handling.

short DevExchangeIOErr (unsigned short usDevNumber,
 unsigned short usSendOffset,
 unsigned short usSendSize,
 void *pvSendData,
 unsigned short
 usReceiveOffset,
 unsigned short usReceiveSize,
 void *pvReceiveData,
 COMSTATE *ptState,
 unsigned long ulTimeout);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usSendOffset Byte offset in the send IO data area of the
communication board

unsigned short usSendSize Length of the send IO data

void * pvSendData Pointer to the user send data buffer

unsigned short usReceiveOffset Byte offset in the receive IO data area of the
communication board

unsigned short usReceiveSize Length of the receive IO data

void * pvReceiveData Pointer to the user receive data buffer

COMSTATE * ptState Pointer to the user COMSTATE buffer

unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

Return value:

Value description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 71

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

COMSTATE structure definition:
// Communication state field structure
typedef struct tagCOMSTATE {
 GLD16U usMode; // Actual mode
 GLD16U usStateFlag; // State flag
 GLD8U abState[64]; // State area
} COMSTATE;

The COMSTATE structure can be transferred on each function call.

• usMode
Defines the actual configured transfer mode of the state field
0xFF = Not supported by the firmware
3 = Cyclic transfer of the state field including the state error flag (usStateFlag)
4 = Event driven transfer of the state field including the usStateFlag

• usStateFlag
0 = No entries in the state field (abState[])
1 = Entries in the state available

• abState[64]
Buffer of the actual state field. Refer to the protocol interface manual for a
description of the state buffer.

Example:
 // Read process image and state field information
 if ((sRet = DevExchangeIOErr(usBoardNumber,
 0,
 0,
 NULL,
 usReadOffset,
 usReadSize,
 &abIOReadData[0],
 &tComState,
 100L)) == DRV_NO_ERROR) {
 // Check state field transfer mode
 switch (tComState.usMode) {
 case STATE_MODE_3:
 // Check state field usStateFlag signals entries
 if (tComState.usStateFlag != 0) {
 // Show COM errors
 }
 break;
 case STATE_MODE_4:
 // Check state field usStateFlag signals new entries
 if (tComState.usStateFlag != 0) {
 // Show COM errors
 }
 break;
 default:
 // State mode unknown or not implemented
 // Read the task state field by yourself
 if ((sRet = DevGetTaskState(....)) != DRV_NO_ERROR) {
 // Error by reading the task state
 }
 break;

The Application Programming Interface 72

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

 } /* end switch */
 }

8.16.3 DevExchangeIOEx()

Description:

The DevExchangeIOEx() function is created for the use with COM mod-ules. It
works in the same way like the DevExchangeIO() function, except the data
transfer mode must be defined by the application.

COM modules are normally not able to signal the actual data transfer modes to the
device driver, which means the driver can not decide how to act with the DPM.
Therefore the evExchangeIOEx() function gets a new parameter which tells the
driver how to handle the DPM.

The configuration of the COM modules are done by writing WARMSTRART
parameters to the board. During configuration, the user defines the IO data transfer
mode. The configured mode must be given the evExchangeIOEx() function to
make sure the driver handles the DPM in the right manner.

short DevExchangeIOEx (unsigned short usDevNumber,
unsigned short usMode,
unsigned short usSendOffset,
unsigned short usSendSize,
void *pvSendData,
unsigned short usReceiveOffset,
unsigned short usReceiveSize,
void *pvReceiveData,
unsigned long ulTimeout);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usMode Data transfer mode (0 . . 4)

unsigned short usSendOffset Byte offset in the send IO data area of the
communication board

unsigned short usSendSize Length of the send IO data

unsigned char * pvSendData Pointer to the user send data buffer

unsigned short usReceiveOffset Byte offset in the receive IO data area of the
communication board

unsigned short usReceiveSize Length of the receive IO data

unsigned char * pvReceiveData Pointer to the user receive data buffer

unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

Return value:

Value description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 73

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.16.4 DevReadSendData()

Description:

The DevReadSendData() function is used, to read back send data which are
written to send data area with the function DevExchangeIO(). This function can be
used by applications to update the user input after the data are successfully written
to the communication board.
short DevReadSendData (unsigned short usDevNumber,
 unsigned short usOffset,
 unsigned short usSize,
 void *pvSendData);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usOffset Byte offset in the send IO data area of the
communication board

unsigned short usSize Length of the send IO data to be read

void * pvSendData Pointer to the user send data buffer

Return value:

Value description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 74

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.16.5 DevReadWriteDPMData()

Description:

The DevReadSendData() function is used, to read back send data which are
written to send data area with the function DevExchangeIO(). This function can be
used by applications to update the user input after the data are successfully written
to the communication board.
short DevReadSendData (unsigned short usDevNumber,
 unsigned short usMode,
 unsigned short usOffset,
 unsigned short usSize,
 void *pvData);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usMode 1 = PARAMETER_READ

0 = PARAMETER_WRITE

unsigned short usOffset Byte offset in DPM of the communication board (0..1022)

unsigned short usSize Length of the data to be read/written

void * pvData Pointer to the user data buffer

The structure definition RAWDATA can be used as a data buffer definition.
// Device raw data structure
typedef struct tagRAWDATA {
 unsigned char abRawData[1022]; // Definition of the last
 KByte
} RAWDATA;

Return value:

Value description

DRV_NO_ERROR 0 = no error

The Application Programming Interface 75

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

8.16.6 DevDownload()

Description:

The DevDownload() function can be used to either load a firmware or configuration
file to the hardware.

The whole data transfer will be executed in the download function. Therefore, the
function loads the file into the memory and transfers it from the memory to the
hardware. The transfer function is running in a “loop”, so no other activity during a
download is possible.

Firmware files must have a correct file extensions, which is checked in the download
function. Configuration files will be checked by the operating system and rejected, if
the database name is not known to the firmware.
short DevDownload (unsigned short usDevNumber,
 unsigned short usMode,
 unsigned char *pszFileName,
 DWORD *pdwBytes);

Parameter:
Type Parameter Description

unsigned short usDevNumber Board number (0 . . 3)

unsigned short usMode 1 = FIRMWARE_DOWNLOAD

2 = CONFIGURATION_DOWNLOAD

unsigned *char pszFileName Pointer to the filename with or without a complete path
description. This must be a multibyte string zero
terminated.

DWORD * pdwBytes Pointer to a Dword value which receives the number of
bytes transferred to the hardware

Return value:

Value Description

DRV_NO_ERROR 0 = no error

Error Numbers 77

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

9 Error Numbers

9.1 List of Error Numbers

The column hint shows if there are additional information. If 'Yes' then see section
hints to error numbers, which is the next section.
Value Parameter Description Hint

0 DRV_NO_ERROR No error

-1 DRV_BOARD_NOT_INITIALIZED DRIVER Board not initialized yes

-2 DRV_INIT_STATE_ERROR DRIVER Error in internal init state

 -3 DRV_READ_STATE_ERROR DRIVER Error in internal read state

-4 DRV_CMD_ACTIVE DRIVER Command on this channel is active

-5 DRV_PARAMETER_UNKNOWN DRIVER Unknown parameter in function
occurred

-6 DRV_WRONG_DRIVER_VERSION DRIVER Version is incompatible with API yes

-7 DRV_PCI_SET_CONFIG_MODE DRIVER Error during PCI set config mode

-8 DRV_PCI_READ_DPM_LENGTH DRIVER Could not read PCI dual port
memory length

-9 DRV_PCI_SET_RUN_MODE DRIVER Error during PCI set run mode

-11 DRV_DEV_NOT_READY DEVICE Not ready (ready flag failed) yes

-12 DRV_DEV_NOT_RUNNING DEVICE Not running (running flag failed) yes

-13 DRV_DEV_WATCHDOG_FAILED DEVICE Watchdog test failed

-14 DRV_DEV_OS_VERSION_ERROR DEVICE Signals wrong OS version yes

-16 DRV_DEV_MAILBOX_FULL DEVICE Send mailbox is full

-17 DRV_DEV_PUT_TIMEOUT DEVICE PutMessage timeout yes

-18 DRV_DEV_GET_TIMEOUT DEVICE GetMessage timeout yes

-19 DRV_DEV_GET_NO_MESSAGE DEVICE No message available

-20 DRV_DEV_RESET_TIMEOUT DEVICE RESET command timeout yes

-21 DRV_DEV_NO_COM_FLAG DEVICE COM-flag not set yes

-22 DRV_DEV_EXCHANGE_FAILED DEVICE IO data exchange failed

-23 DRV_DEV_EXCHANGE_TIMEOUT DEVICE IO data exchange timeout yes

-24 DRV_DEV_COM_MODE_UNKNOW
N

DEVICE IO data mode unknown

-25 DRV_DEV_FUNCTION_FAILED DEVICE Function call failed

-26 DRV_DEVDPMSIZE_MISMATCH DEVICE DPM size differs from configuration

-27 DRV_DEV_STATE_MODE_UNKNO
WN

DEVICE State mode unknown

-30 DRV_USER_OPEN_ERROR USER Driver not open (device driver not
loaded)

yes

-31 DRV_USER_INIT_DRV_ERROR USER Can’t connect with device

-32 DRV_USER_NOT_INITIALIZED USER Board not initialized (DevInitboard()
not called)

Error Numbers 78

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

-33 DRV_USER_COM_ERR USER IOCTRL function failed yes

-34 DRV_USER_DEV_NUMBER_INVAL
ID

USER Parameter DeviceNumber invalid

-35 DRV_USER_INFO_AREA_INVALID USER Parameter InfoArea unknown

-36 DRV_USER_NUMBER_INVALID USER Parameter Number invalid

-37 DRV_USER_MODE_INVALID USER Parameter Mode invalid

-38 DRV_USER_MSG_BUF_NULL_PTR USER NULL pointer assignment

-39 DRV_USER_MSG_BUF_TOO_SHO
RT

USER Message buffer too short

-40 DRV_USER_SIZE_INVALID USER Parameter Size invalid

-42 DRV_USER_SIZE_ZERO USER Parameter Size with zero length

-43 DRV_USER_SIZE_TOO_LONG USER Parameter Size too long

-44 DRV_USER_DEV_PTR_NULL USER Device address is a NULL pointer

-45 DRV_USER_BUF_PTR_NULL USER Pointer to buffer is a NULL pointer

-46 DRV_USER_SENDSIZE_TOO_LON
G

USER Parameter SendSize too long

-47 DRV_USER_RECVSIZE_TOO_LON
G

USER Parameter ReceiveSize too long

-48 DRV_USER_SENDBUF_PTR_NULL USER Pointer to send buffer is a NULL
pointer

-49 DRV_USER_RECVBUF_PTR_NULL USER Pointer to receive buffer is a NULL
pointer

-100 DRV_USER_FILE_OPEN_FAILED USER File not opened

-101 DRV_USER_FILE_SIZE_ZERO USER File size zero

-102 DRV_USER_FILE_NO_MEMORY USER not enough memory to load file

-103 DRV_USER_FILE_READ_FAILED USER File read failed

-104 DRV_USER_INVALID_FILETYPE USER File type invalid

-105 DRV_USER_FILENAME_INVALID USER File name not valid

>=

1000

RCS_ERROR Board operation system errors will be passed
with this offset (e.g. error 1234 means RCS
error 234). Only if a ready fault occurred
during board initialization.

Error Numbers 79

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

9.2 Hints to Error Numbers

This section contains more information about possible reasons to certain error
numbers.

• Error: -1
The communication board is not initialized by the driver. No or wrong
configuration found for the given board.
-Check the driver configuration
- Driver function used without calling DevOpenDriver() first

• Error: -6
The device driver version does not corresponds to the driver API version
- Make sure to use the same version of the device driver and the driver API

• Error: -11
Board is not ready.
This is a general error, the board has a hardware malfunction.

• Error: -12
At least one task is not initialized. The board is ready but not all tasks are running.
- No data base is loaded into the device
- Wrong parameter that causes that a task can't initialize. Use ComPro menu
Online-task-version.

• Error: -14
No license code found on the communication board.
- Device has no license for the used operating system or customer software.
- No firmware or no data base on the device loaded.

• Error: -17
No message could be send during the timeout period given in the
DevPutMessage() function.
- Using device interrupts
Wrong or no interrupt selected. Check interrupt on the device and in driver
registration. They have to be the same!. Interrupt already used by an other PC
component.
- Device internal segment buffer full
PutMessage() function not possible, because all segments on the device are in
use. This error occurs, when only PutMessage() is used but not
GetMessage().
- HOST flag not set for the device
No messages are taken by the device. Use DevSetHostState() to signal a board
an application is available.

Error Numbers 80

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

• Error: -18
No message received during the timeout period given in the
DevGetMessage() function.
- Using device interrupts
Wrong or no interrupt selected. Check interrupt on the device and in driver
registration. They have to be the same!. Interrupt already used by an other PC
component.
- The used protocol on the device needs longer than the timeout period given in
the DevGetMessage() function

• Error: -20
The device needs longer than the timeout period given in the DevReset()
function
- Using device interrupts
This error occurs when for example interrupt 9 is set in the driver registration but
no or a wrong interrupt is jumpered on the device (=device in poll mode).
Interrupt already used by an other PC component.
- The timeout period can differ between fieldbus protocols

• Error: -21
The device can not reach communication state.
- Device not connected to the fieldbus
- No station found on the fieldbus
- Wrong configuration on the device

• Error: -23
The device needs longer than the timeout period given in the
DevExchangeIO() function.
- Using device interrupts
Wrong or no interrupt selected. Check interrupt on the device and in driver
registration. They have to be the same!. Interrupt already used by an other PC
component.

• Error: -30
The device driver could not be opened.
- Device driver not installed
- Wrong parameters in the driver configuration
If the driver finds invalid parameters for a communication board and no other
boards with valid parameters are available, the driver will not be loaded.

• Error: -33
A driver function could not be called. This is an internal error between the device
driver and the API.
- Make sure to use a device driver and a API with the same version.
- An incompatible old driver API is used.

Development Environments 81

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

10 Development Environments

As we began with the CIF Device Driver code conversion for the Linux, the kernel
2.2.10 was the actual one. With the subsequent kernel development and their
distribution we tried to test and/or adjust the code to assure that our driver goes step
by step with this evolutionary kernel development.

Please, consult the Chapter „The Driver Versions“ for more information.

The driver represents 32-bit kernel driver and runs in kernel space. It is implemented
as a character device driver, the code is written in C and compiled with gcc compiler.

The Driver Setup and Test program was developed with GTK+, version 1.2.8.

Copyright 83

Copyright * Hilscher Gesellschaft für Systemautomation * Dd:Linux#2EN

11 Copyright

Complete package is copyrighted by Hilscher GmbH and is licensed through the
GNU Lesser General Public License. You should have received a copy of the GNU
Library General Public License along with this package. If not, please refer to
http://www.gnu.org/licenses/lgpl.html.

http://www.gnu.org/licenses/lgpl.html

	Introduction
	Linux
	The Driver Versions
	Supported Hilscher Cards
	PCMCIA Support
	Data transfer
	Terms for this Manual

	Getting Started
	Overview

	Communication
	About the User Interface
	Interface Structure
	Message and Process Data Communication
	Sending (Putting) and Receiving (Getting) Messages
	Direct Data Transfer, DEVICE Controlled
	Buffered Data Transfer, DEVICE Controlled
	Uncontrolled Direct Data Transfer
	Buffered Data Transfer, HOST Controlled
	Direct Data Transfer, HOST Controlled

	The Device Driver
	General
	Package Contents

	Installation of the driver
	Device Driver startup/shutdown

	The TCP/IP Server
	General
	Requirements
	Getting started with TCP/IP Server
	The communication process
	ODM Message Definition
	Compatibility

	Programming Instructions
	Include the Interface API in Your Application
	Open and Close the driver
	Writing an Application
	The Demo Application

	The Application Programming Interface
	API Functions Overview
	DevOpenDriver()
	DevCloseDriver()
	DevGetBoardInfo()
	DevGetBoardInfoEx()
	DevInitBoard()
	DevExitBoard()
	DevPutTaskParameter()
	DevGetTaskParameter()
	DevReset()
	DevSetHostState()
	DevTriggerWatchdog()
	Message Transfer Functions
	DevGetTaskState()
	DevGetInfo()
	Process Data Transfer Functions

	Error Numbers
	List of Error Numbers
	Hints to Error Numbers

	Development Environments
	Copyright

